CÁC MÔ HÌNH HỌC MÁY BIỂU DIỄN NĂNG LƯỢNG NGUYÊN TỬ TRONG CÁC VẬT LIỆU TỪ
Thông tin bài báo
Ngày nhận bài: 27/06/24                Ngày hoàn thiện: 30/09/24                Ngày đăng: 30/09/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., vol. 136, 1964, doi: 10.1103/PhysRev.136.B864.
[2] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev., vol. 140, 1965, doi: 10.1103/PhysRev.140.A1133.
[3] C.M. Handley and J. Behler, “Next generation interatomic potentials for condensed systems,” Eur. Phys. J. B., vol. 87, 2014, Art. no. 152.
[4] A.P. Bartók and G. Csányi, “Gaussian approximation potentials: A brief tutorial introduction,” Int. J. Quantum Chem., vol. 115, pp. 1051-1057, 2015.
[5] S. De, A. P. Bartók, G. Csanyi, and M. Ceriotti, “Comparing molecules and solids across structural and alchemical space,” Phys. Chem. Chem. Phys., vol. 18, pp. 13754-13769, 2016.
[6] A. Seko et al., “A sparse representation for potential energy surface,” Phys. Rev. B., vol. 90, 2014, Art. no. 24101.
[7] M. Rupp, A. Tkatchenko, K.-R. Muller, and O. A. von Lilienfeld, “Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning,” Phys. Rev. Lett., vol. 108, 2012, Art. no. 58301.
[8] T. L. Pham, H. Kino, K. Terakura, T. Miyake, and H. C. Dam, “Novel mixture model for the representation of potential energy surfaces,” J. Chem. Phys., vol. 145, 2016, Art. no. 154103.
[9] J. Behler and M. Parrinello, “Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces,” Phys. Rev. Lett., vol. 98, 2007, Art. no. 146401.
[10] N. Artrith and J. Behler, “High-dimensional neural network potentials for metal surfaces: A prototype study for copper,” Phys. Rev. B., vol. 85, 2012, Art. no. 45439.
[11] T.-C. Nguyen, V.-Q. Nguyen, V.-L. Ngoc, Q.-K. Than, and T.-L. Pham, “Learning hidden chemistry with deep neural networks,” Computational Materials Science, vol. 200, 2021, Art. no. 110784.
[12] T. L. Pham, V. D. Nguyen, and T. C. Nguyen, “Machine Learning Representation for Atomic Forces and Energies,” VNU Journal of Science: Mathematics-Physics, vol. 36, pp. 74-80, 2020.
[13] V.-Q. Nguyen, V.-C. Nguyen, T.-C. Nguyen, X.-V. Nguyen, and T.-L. Pham, “Pairwise interactions for potential energy surfaces and atomic forces using deep neural networks,” Computational Materials Science, vol. 209, 2022, Art. no. 111379.
[14] Scikit-learn developers (BSD License), “Scikit-learn Machine Learning in Python”. [Online]. Available: https://scikit-learn.org/stable/. [Accessed Jun. 25, 2024].
[15] S.-L. Shang, Y. Wang, and Z.-K. Liu, “Thermodynamic fluctuations between magnetic states from first-principles phonon calculations: The case of bcc Fe,” Phys. Rev. B, vol. 82, 2010, Art. no. 014425.
[16] F. Kormann, A. Dick, B. Grabowski, T. Hickel, and J. Neugebauer, “Atomic forces at finite magnetic temperatures: Phonons in paramagnetic iron,” Phys. Rev. B, vol. 85, 2012, Art. no. 125104.
[17] Y. Ikeda, A. Seko, A.Togo, and I. Tanaka, “Phonon softening in paramagnetic bcc Fe and its relationship to the pressure-induced phase transition,” Phys. Rev. B, vol. 90, 2014, Art. no. 134106.
DOI: https://doi.org/10.34238/tnu-jst.10668
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu
 





