CẤU TRÚC VÀ TÍNH CHẤT TỪ CỦA CÁC HỆ HẠT NANO TỔ HỢP Fe3O4@CoFe2O4
Thông tin bài báo
Ngày nhận bài: 22/07/24                Ngày hoàn thiện: 07/10/24                Ngày đăng: 08/10/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] L. S. Ganapathe, M. A. Mohamed, R. M. Yunus, and D. D. Berhanuddin, “Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalisation,” Magnetochemistry, vol. 6, no. 4, pp. 1-35, 2020.
[2] K. C. Barick, S. Singh, D. Bahadur, M. A. Lawande, D. P. Patkar, and P. A. Hassan, “Carboxyl decorated Fe3O4 nanoparticles for MRI diagnosis and localized hyperthermia,” J. Colloid Interface Sci., vol. 418, pp. 120-125, 2014.
[3] H. Cen and Z. Nan, “Monodisperse Zn-doped Fe3O4 formation and photo-Fenton activity for degradation of rhodamine B in water,” J. Phys. Chem. Solids, vol. 121, pp. 1-7, 2018.
[4] E. A. Bakr, M. N. El-Nahass, W. M. Hamada, and T. A. Fayed, “Facile synthesis of superparamagnetic Fe3O4@noble metal core-shell nanoparticles by thermal decomposition and hydrothermal methods: Comparative study and catalytic applications,” RSC Adv., vol. 11, no. 2, pp. 781-797, 2020.
[5] M. Ghazanfari, F. Johar, and A. Yazdani, “Synthesis and characterization of Fe3O4@ Ag core-shell: structural, morphological, and magnetic properties,” J. Ultrafine Grained Nanostructured Mater., vol. 47, no. 2, pp. 97-103, 2014.
[6] L. Wang et al., “Monodispersed core-shell Fe3O4@Au nanoparticles.,” J. Phys. Chem. B, vol. 109, no. 46, pp. 21593-21601, 2005.
[7] C. T. Dung et al., “Synthesis of Bifunctional Fe3O4@SiO2-Ag Magnetic–Plasmonic Nanoparticles by an Ultrasound Assisted Chemical Method,” J. Electron. Mater., vol. 46, no. 6, pp. 3646-3653, 2017.
[8] J. C. Pieretti, W. R. Rolim, F. F. Ferreira, C. B. Lombello, M. H. M. Nascimento, and A. B. Seabra, “Synthesis, Characterization, and Cytotoxicity of Fe3O4@Ag Hybrid Nanoparticles: Promising Applications in Cancer Treatment,” J. Clust. Sci., vol. 31, no. 2, pp. 535-547, 2020.
[9] J. Robles, R. Das, M. Glassell, M. H. Phan, and H. Srikanth, “Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia,” AIP Adv., vol. 8, no. 5, pp. 2-8, 2018.
[10] D. Polishchuk et al., “Profound Interfacial Effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles,” Nanoscale Res. Lett., vol. 13, 2018, Art. no. 67.
[11] S. D. Oberdick et al., “Spin canting across core/shell Fe3O4/MnxFe3-xO4 nanoparticles,” Sci. Rep., vol. 8, no. 1, pp. 1-12, 2018.
[12] D. A. Balaev et al., “Synthesis and Magnetic Properties of the Core–Shell Fe3O4/CoFe2O4 Nanoparticles,” Phys. Solid State, vol. 62, no. 2, pp. 285-290, 2020.
[13] J. H. Lee et al., “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat. Nanotechnol., vol. 6, no. 7, pp. 418-422, 2011.
[14] P. A. Kumar, S. Ray, S. Chakraverty, and D. D. Sarma, “Engineered spin-valve type magnetoresistance in Fe3O4-CoFe2O4 core-shell nanoparticles,” Appl. Phys. Lett., vol. 103, 2013, doi: 10.1063/1.4819956.
[15] A. López-Ortega, M. Estrader, G. Salazar-Alvarez, A. G. Roca, and J. Nogués, “Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles,” Phys. Rep., vol. 553, pp. 1-32, 2015.
[16] E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 240, no. 826. pp. 599-642, 1948.
[17] O. Masala et al., “Preparation of magnetic spinel ferrite core/shell nanoparticles: Soft ferrites on hard ferrites and vice versa,” Solid State Sci., vol. 8, no. 9, pp. 1015-1022, 2006.
[18] H. M. Do et al., “Oxidation-controlled magnetism and Verwey transition in Fe/Fe3O4 lamellae,” J. Sci. Adv. Mater. Devices, vol. 5, no. 2, pp. 263-269, 2020.
[19] S. Ammar et al., “Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium,” J. Mater. Chem., vol. 11, no. 1, pp. 186-192, 2001.
[20] S. H. Moon, S. H. Noh, J. H. Lee, T. H. Shin, Y. Lim, and J. Cheon, “Ultrathin Interface Regime of Core-Shell Magnetic Nanoparticles for Effective Magnetism Tailoring,” Nano Lett., vol. 17, no. 2, pp. 800-804, 2017.
[21] K. Maaz, A. Mumtaz, S. K. Hasanain, and M. F. Bertino, “Temperature dependent coercivity and magnetization of nickel ferrite nanoparticles,” J. Magn. Magn. Mater., vol. 322, no. 15, pp. 2199–2202, 2010.
[22] C. Nayek, K. Manna, G. Bhattacharjee, P. Murugavel, and I. Obaidat, “Investigating size-and temperature-dependent coercivity and saturation magnetization in PEG coated Fe3O4 nanoparticles,” Magnetochemistry, vol. 3, no. 2, 2017, doi: 10.3390/magnetochemistry3020019.
DOI: https://doi.org/10.34238/tnu-jst.10798
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





