NGHIÊN CỨU VỀ QUY HOẠCH ĐƯỜNG ĐI CHO PHƯƠNG TIỆN BAY KHÔNG NGƯỜI LÁI ĐA CÁNH QUẠT (MAV) DỰA TRÊN MÔ HÌNH ĐIỀU KHIỂN DỰ BÁO
Thông tin bài báo
Ngày nhận bài: 27/08/24                Ngày hoàn thiện: 08/10/24                Ngày đăng: 08/10/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] R. Cooley, S. Wolf, and M. Borowczak, “Secure and Decentralized Swarm Behavior with Autonomous Agents for Smart Cities,” in 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA: IEEE, Sep. 2018, pp. 1-8, doi: 10.1109/ISC2.2018.8656939.
[2] H. T. Do, H. T. Hua, H. T. T. Nguyen, M. T. Nguyen, and H. T. Tran, “Cooperative Tracking Framework for Multiple Unmanned Aerial Vehicles (UAVs),” in Advances in Engineering Research and Application -Lecture Notes in Networks and Systems, vol. 366, Cham: Springer International Publishing, 2022, pp. 276-285, doi: 10.1007/978-3-030-92574-1_29.
[3] H. T. Do, H. T. Hua, M. T. Nguyen, C. V. Nguyen, H. T. T. Nguyen, H. T. Nguyen, and N. T. T. Nguyen, "Formation control algorithms for multiple-uavs: a comprehensive survey," EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, vol. 8, no. 27, 2021, doi: 10.4108/eai.10-6-2021.170230.
[4] C. Zammit, “3D Path Planning for UAVs in Dynamic Environments in the Presence of Uncertainties,” PhD thesis, Delft University of Technology, 2021, doi: 10.4233/UUID:9A3302F6-6B8F-4AAD-B877-B270BEE7AA78.
[5] A. A. Saadi, A. Soukane, Y. Meraihi, A. B. Gabis, S. Mirjalili, and A. Ramdane-Cherif, “UAV Path Planning Using Optimization Approaches: A Survey,” Arch. Comput. Methods Eng., vol. 29, no. 6, pp. 4233–4284, Oct. 2022, doi: 10.1007/s11831-022-09742-7.
[6] M. T. Nguyen, C. V. Nguyen, H. T. Do, H. T. Hua, T. A. Tran, A. D. Nguyen, G. Ala, and F. Viola, "UAV-assisted data collection in wireless sensor networks: A comprehensive survey," Electronics, vol. 10, no. 21, 2021, doi: 10.3390/electronics10212603.
[7] M. T. Nguyen, H. M. La, and K. A. Teague, "Collaborative and Compressed Mobile Sensing for Data Collection in Distributed Robotic Networks," in IEEE Transactions on Control of Network Systems, vol. 5, no. 4, pp. 1729-1740, Dec. 2018, doi: 10.1109/TCNS.2017.2754364.
[8] F. Wang, X. Zhu, Z. Zhou, and Y. Tang, “Deep-reinforcement-learning-based UAV autonomous navigation and collision avoidance in unknown environments,” Chin. J. Aeronaut., vol. 37, no. 3, pp. 237-257, Mar. 2024, doi: 10.1016/j.cja.2023.09.033.
[9] A. Majeed and S. Lee, “A Fast Global Flight Path Planning Algorithm Based on Space Circumscription and Sparse Visibility Graph for Unmanned Aerial Vehicle,” Electronics, vol. 7, no. 12, p. 375, Dec. 2018, doi: 10.3390/electronics7120375.
[10] L. Rocha, M. Aniceto, I. Araujo, and K. Vivaldini, “A UAV Global Planner to Improve Path Planning in Unstructured Environments,” in 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece: IEEE, Jun. 2021, pp. 688–697, doi: 10.1109/ICUAS51884.2021.9476692.
[11] D. Ortiz-Arroyo, “A hybrid 3D path planning method for UAVs,” in 2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), Cancun, Mexico: IEEE, Nov. 2015, pp. 123–132, doi: 10.1109/RED-UAS.2015.7440999.
[12] E. Zehavi and N. Agmon, “Hybrid Path Planning for UAV Traffic Management,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic: IEEE, Sep. 2021, pp. 6427–6433, doi: 10.1109/IROS51168.2021.9636390.
[13] T. Zhang, X. Huo, S. Chen, B. Yang, and G. Zhang, “Hybrid Path Planning of A Quadrotor UAV Based on Q-Learning Algorithm,” in 2018 37th Chinese Control Conference (CCC), Wuhan: IEEE, Jul. 2018, pp. 5415–5419, doi: 10.23919/ChiCC.2018.8482604.
[14] D. Debnath, F. Vanegas, S. Boiteau, and F. Gonzalez, “An Integrated Geometric Obstacle Avoidance and Genetic Algorithm TSP Model for UAV Path Planning,” Drones, vol. 8, no. 7, p. 302, Jul. 2024, doi: 10.3390/drones8070302.
[15] X. Mai, N. Dong, S. Liu, and H. Chen, “UAV path planning based on a dual-strategy ant colony optimization algorithm,” Intell. Robot., vol. 3, no. 4, pp. 666–683, Dec. 2023, doi: 10.20517/ir.2023.37.
[16] E. Olcay, H. Meeß, and G. Elger, “Dynamic Obstacle Avoidance for UAVs using MPC and GP-Based Motion Forecast,” in 2024 European Control Conference (ECC), Stockholm, Sweden: IEEE, Jun. 2024, pp. 1024–1031, doi: 10.23919/ECC64448.2024.10591083.
[17] C. Kallies, S. Gasche, and R. Karásek, “Multi-Agent Cooperative Path Planning via Model Predictive Control,” in 2024 Integrated Communications, Navigation and Surveillance Conference (ICNS), Herndon, VA, USA: IEEE, Apr. 2024, pp. 1–7, doi: 10.1109/ICNS60906.2024.10550797.
[18] H. Jiang, Z. Huang, Z. Ma, Z. Zhang, J. Wu, and X. Ping, “Multi-UAV Trajectory Planning and Tracking Via Improved Informed-RRT* and MPC Algorithms,” in 2023 5th International Conference on Robotics, Intelligent Control and Artificial Intelligence (RICAI), Hangzhou, China: IEEE, Dec. 2023, pp. 583–588, doi: 10.1109/RICAI60863.2023.10489390.
[19] Q. L. Dinh, H. C. Nguyen, P. T. Duong, Q. V. Nguyen, and T. M. Nguyen, “A comprehensive study of mobile robot navigation and obstacle avoidance schemes,” TNU J. Sci. Technol., vol. 228, no. 14, pp. 302–312, Nov. 2023, doi: 10.34238/tnu-jst.8978.
[20] J. Luo, J. Liu, and Q. Liang, “UAV Swarm Trajectory Planning Based on a Novel Particle Swarm Optimization,” in Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021), in Lecture Notes in Electrical Engineering, vol. 861, Singapore: Springer Singapore, 2022, pp. 509–520, doi: 10.1007/978-981-16-9492-9_51.
[21] D. T. Tran, V. Q. Nguyen, C. V. Nguyen, D. L. T. Tran, H. T. Tran, and N. D. Anh, “Improved Accuracy of Path System on Creating Intelligence Base,” in Advances in Information and Communication Technology, Cham: Springer Nature Switzerland, 2023, pp. 194–205, doi: 10.1007/978-3-031-49529-8_21.
[22] R. E. Roque -Claros, D. P. Flores-Llanos, A. R. Maquera-Humpiri, V. K. Sonthi, S. Sengan, and R. Rangasamy, “UAV Path Planning Model Leveraging Machine Learning and Swarm Intelligence for Smart Agriculture,” Scalable Comput. Pract. Exp., vol. 25, no. 5, pp. 3752–3765, Aug. 2024, doi: 10.12694/scpe.v25i5.3131.
[23] G. Radzki, M. Relich, G. Bocewicz, and Z. Banaszak, “Declarative Approach to UAVs Mission Contingency Planning in Dynamic Environments,” in Distributed Computing and Artificial Intelligence, Volume 2: Special Sessions 18th International Conference, in Lecture Notes in Networks and Systems, vol. 332, Cham: Springer International Publishing, 2022, pp. 3–18, doi: 10.1007/978-3-030-86887-1_1.
[24] F. Miao et al., “Optimizing UAV Path Planning in Maritime Emergency Transportation: A Novel Multi-Strategy White Shark Optimizer,” J. Mar. Sci. Eng., vol. 12, no. 7, p. 1207, Jul. 2024, doi: 10.3390/jmse12071207.
[25] C. V. Nguyen, H. T. Tran, H. T. Do, T. Hoang, D. L. T. Tran, and M. T. Nguyen, “A Novel Framework of Visual Detection, Tracking and Landing for UAVs Utilizing AR Markers,” in 2023 International Conference on Control, Robotics and Informatics (ICCRI), Danang, Vietnam: IEEE, May 2023, pp. 81–85, doi: 10.1109/ICCRI58865.2023.00023.
[26] K. Geng, N. A. Chulin, and Z. Wang, “Fault-Tolerant Model Predictive Control Algorithm for Path Tracking of Autonomous Vehicle,” Sensors, vol. 20, no. 15, p. 4245, Jul. 2020, doi: 10.3390/s20154245.
[27] S. A. Emami and A. Banazadeh, “Fault‐tolerant predictive trajectory tracking of an air vehicle based on acceleration control,” IET Control Theory Appl., vol. 14, no. 5, pp. 750–762, Mar. 2020, doi: 10.1049/iet-cta.2019.0596.
[28] T. A. Vuong, D. L. T. Tran, T. C. Vo, M. T. Nguyen, and H. T. Tran, “A novel framework of building operation algorithm for the block of technical diagnostics of aircraft’s automatic control system,” Bull. Electr. Eng. Inform., vol. 13, no. 4, pp. 2340–2347, Aug. 2024, doi: 10.11591/eei.v13i4.5799.
[29] Y. Chen, W. Li, and J. Yue, “Dynamic path planning of UAV for three-dimensional moving target search in complex environment,” in 2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT), Chongqing, China: IEEE, Nov. 2021, pp. 770–775. doi: 10.1109/ICESIT53460.2021.9696633.
[30] Y. Liu, J. V. Schijndel, S. Longo, and E. C. Kerrigan, “UAV energy extraction with incomplete atmospheric data using MPC,” IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 2, pp. 1203–1215, Apr. 2015, doi: 10.1109/TAES.2014.130657.
[31] M. Castillo-Lopez, S. A. Sajadi-Alamdari, J. L. Sanchez-Lopez, M. A. Olivares-Mendez, and H. Voos, “Model Predictive Control for Aerial Collision Avoidance in Dynamic Environments,” in 2018 26th Mediterranean Conference on Control and Automation (MED), Zadar, Croatia: IEEE, Jun. 2018, pp. 1–6, doi: 10.1109/MED.2018.8442967.
[32] I. B. P. Nascimento, A. Ferramosca, L. C. A. Pimenta, and G. V. Raffo, “NMPC Strategy for a Quadrotor UAV in a 3D Unknown Environment,” in 2019 19th International Conference on Advanced Robotics (ICAR), Belo Horizonte, Brazil: IEEE, Dec. 2019, pp. 179–184, doi: 10.1109/ICAR46387.2019.8981556.
[33] S. Javed et al., “State-of-the-Art and Future Research Challenges in UAV Swarms,” IEEE Internet Things J., vol. 11, no. 11, pp. 19023–19045, Jun. 2024, doi: 10.1109/JIOT.2024.3364230.
[34] Y. Zhou, B. Rao, and W. Wang, “UAV Swarm Intelligence: Recent Advances and Future Trends,” IEEE Access, vol. 8, pp. 183856–183878, 2020, doi: 10.1109/ACCESS.2020.3028865.
[35] H. Nguyen, T. Quyen, C. Nguyen, A. Le, H. Tran, and M. Nguyen, “Control Algorithms for UAVs: A Comprehensive Survey,” EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, vol. 7, no. 23, p. 164586, May 2020, doi: 10.4108/eai.18-5-2020.164586.
[36] M. T. Nguyen and K. A. Teague, "Compressive and cooperative sensing in distributed mobile sensor networks," MILCOM 2015 - 2015 IEEE Military Communications Conference, Tampa, FL, USA, 2015, pp. 1033-1038, doi: 10.1109/MILCOM.2015.7357581.
[37] N. Mohammadi, M. Tayefi, and M. Zhu, “Vertical take-off and hover to cruise transition for a hybrid UAV using model predictive controller and MPC allocation,” Aircr. Eng. Aerosp. Technol., vol. 95, no. 10, pp. 1642–1650, Nov. 2023, doi: 10.1108/AEAT-04-2023-0090.
[38] T. Xu, J. Liu, Z. Zhang, G. Chen, D. Cui, and H. Li, “Distributed MPC for Trajectory Tracking and Formation Control of Multi-UAVs With Leader-Follower Structure,” IEEE Access, vol. 11, pp. 128762–128773, 2023, doi: 10.1109/ACCESS.2023.3329232.
[39] K. Shimada and T. Nishida, "Particle filter-model predictive control of quadcopters," Proceedings of the 2014 International Conference on Advanced Mechatronic Systems, Kumamoto, Japan, 2014, pp. 421-424, doi: 10.1109/ICAMechS.2014.6911582.
[40] K. Alexis, G. Nikolakopoulos, and A. Tzes, “On Trajectory Tracking Model Predictive Control of an Unmanned Quadrotor Helicopter Subject to Aerodynamic Disturbances,” Asian J. Control, vol. 16, no. 1, pp. 209–224, Jan. 2014, doi: 10.1002/asjc.587.
[41] J. Marzat, S. Bertrand, A. Eudes, M. Sanfourche, and J. Moras, “Reactive MPC for Autonomous MAV Navigation in Indoor Cluttered Environments: Flight Experiments,” IFAC-Pap., vol. 50, no. 1, pp. 15996–16002, Jul. 2017, doi: 10.1016/j.ifacol.2017.08.1910.
[42] Z. Wang, K. Akiyama, K. Nonaka, and K. Sekiguchi, “Experimental verification of the model predictive control with disturbance rejection for quadrotors,” in 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Hangzhou, China: IEEE, Jul. 2015, pp. 778–783, doi: 10.1109/SICE.2015.7285529.
[43] S. Li, Y. Chen, and Y. Yang, “Multi-rotor UAV path planning based on Model Predictive Control and Control Barrier Function,” in 2024 36th Chinese Control and Decision Conference (CCDC), Xi’an, China: IEEE, May 2024, pp. 1141–1146, doi: 10.1109/CCDC62350.2024.10587478.
[44] J. Guo, W. Xia, X. Hu, and H. Ma, “Feedback RRT* algorithm for UAV path planning in a hostile environment,” Computers & Industrial Engineering, vol. 174, p. 108771, Dec. 2022, doi: 10.1016/j.cie.2022.108771.
[45] W. Miao, W. Yefu, and H. Fengyu, “Trajectory tracking of unmanned vehicle based on improved model predictive control,” in 2021 20th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), Nanning, China: IEEE, Dec. 2021, pp. 57–60, doi: 10.1109/DCABES52998.2021.00021.
[46] G. Darivianakis, K. Alexis, M. Burri, and R. Siegwart, “Hybrid predictive control for aerial robotic physical interaction towards inspection operations,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China: IEEE, May 2014, pp. 53–58, doi: 10.1109/ICRA.2014.6906589.
[47] S. Khoudiri, A. Khoudiri, B. Toual, and M. Khaleel, “Trajectory control for a Hexacopter UAV using Nonsingular Terminal Sliding Mode Control,” Stud. Eng. EXACT Sci., vol. 5, no. 1, pp. 988–1010, Apr. 2024, doi: 10.54021/seesv5n1-052.
[48] H. Sang, “Quadrotor UAV Trajectory Tracking Control Based on Adaptive Non-singular Terminal Sliding Mode,” J. Electr. Syst., vol. 20, no. 3, pp. 929–939, Apr. 2024, doi: 10.52783/jes.3022.
[49] D. Bicego, J. Mazzetto, R. Carli, M. Farina, and A. Franchi, “Nonlinear Model Predictive Control with Enhanced Actuator Model for Multi-Rotor Aerial Vehicles with Generic Designs,” J. Intell. Robot. Syst., vol. 100, no. 3–4, pp. 1213–1247, Dec. 2020, doi: 10.1007/s10846-020-01250-9.
[50] P. Lin, S. Chen, and C. Liu, “Model predictive control-based trajectory planning for quadrotors with state and input constraints,” in 2016 16th International Conference on Control, Automation and Systems (ICCAS), Gyeongju, South Korea: IEEE, Oct. 2016, pp. 1618–1623, doi: 10.1109/ICCAS.2016.7832517.
[51] L. E. G. Linares and E. R. García, “Non-linear Model-based Predictive Control for Trajectory Tracking and Control Effort Minimization in a Smartphone-based Quadrotor,” J. Autom. Mob. Robot. Intell. Syst., vol. 16, no. 4, pp. 13–18, Oct. 2023, doi: 10.14313/JAMRIS/4-2022/28.
[52] R. Allen and M. Pavone, “A Real-Time Framework for Kinodynamic Planning with Application to Quadrotor Obstacle Avoidance,” in AIAA Guidance, Navigation, and Control Conference, San Diego, California, USA: American Institute of Aeronautics and Astronautics, Jan. 2016, doi: 10.2514/6.2016-1374.
[53] G. Garimella, M. Sheckells, and M. Kobilarov, “Robust obstacle avoidance for aerial platforms using adaptive model predictive control,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, Singapore: IEEE, May 2017, pp. 5876–5882, doi: 10.1109/ICRA.2017.7989692.
[54] H. T. Do, C V. Nguyen, H. T. Tran, V. Q. Nguyen, H. T. T. Nguyen, N. H. Nguyen, H. T. Vo, M. L. Trinh, H. D. Nguyen, and M. T. Nguyen, "AR Marker Detection Based Autonomous Attitude Control for an Indoor Non-GPS Aided Quadcopter," In International Conference on Engineering Research and Applications, Cham: Springer Nature Switzerland, 2023, pp. 228-238, doi: 10.1007/978-3-031-62238-0_26.
[55] Y. V. Morozov, “Emergency Control of a Quadrocopter in Case of Failure of Two Symmetric Propellers,” Autom. Remote Control, vol. 79, no. 3, pp. 463–478, Mar. 2018, doi: 10.1134/S0005117918030062.
[56] B. Li, C. Song, S. Bai, J. Huang, R. Ma, K. Wan, and E. Neretin, “Multi-UAV Trajectory Planning during Cooperative Tracking Based on a Fusion Algorithm Integrating MPC and Standoff,” Drones, vol. 7, no. 3, p. 196, 2023, doi: 10.3390/drones7030196.
[57] D. L. T. Tran, T. C. Vo, H. T. Do, V. Q. Nguyen, A. D. Nguyen, T. Hoang, Q. N. A. Nguyen, H. T. Tran, and M. T. Nguyen, "A Novel Method for Straight Take-Off of Quadrotors in GPS-Denied Environments Utilizing Optical Flow," In International Conference on Engineering Research and Applications, Cham: Springer Nature Switzerland, 2023, pp. 20-30, doi: 10.1007/978-3-031-62238-0_3.
[58] M. T. Nguyen, L. H. Truong, and T. T. H. Le, "Video surveillance processing algorithms utilizing artificial intelligent (AI) for unmanned autonomous vehicles (UAVs)," MethodsX, vol. 8, 2021, doi: 10.1016/j.mex.2021.101472.
DOI: https://doi.org/10.34238/tnu-jst.11017
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





