TĂNG CƯỜNG ĐỘ CHÍNH XÁC TRONG DỰ BÁO LƯỢNG MƯA Ở KHU VỰC MIỀN TRUNG VIỆT NAM SỬ DỤNG MÔ HÌNH XGBOOST CHO DỮ LIỆU ĐA NGUỒN
Thông tin bài báo
Ngày nhận bài: 17/10/24                Ngày hoàn thiện: 22/11/24                Ngày đăng: 22/11/24Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] Q. Sun, C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K. L. Hsu, "A review of global precipitation data sets: Data sources, estimation, and intercomparisons," Reviews of Geophysics, vol. 56, no. 1, pp. 79-107, 2018.
[2] M. Guarascio, G. Folino, F. Chiaravalloti, S. Gabriele, A. Procopio, and P. Sabatino, "A machine learning approach for rainfall estimation integrating heterogeneous data sources," IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-11, 2020.
[3] L. Zhang, X. Li, D. Zheng, K. Zhang, Q. Ma, Y. Zhao, and Y. Ge, "Merging multiple satellite-based precipitation products and gauge observations using a novel double machine learning approach," Journal of Hydrology, vol. 594, 2020, Art. no. 125969.
[4] H. Chen, V. Chandrasekar, R. Cifelli, and P. Xie, "A machine learning system for precipitation estimation using satellite and ground radar network observations," IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 2, pp. 982-994, 2019.
[5] M. Putra, M. S. Rosid, and D. Handoko, "High-Resolution Rainfall Estimation Using Ensemble Learning Techniques and Multisensor Data Integration," Sensors, vol. 24, no. 15, 2024, Art. no. 5030.
[6] Y. Mohia, R. Absi, M. Lazri, K. Labadi, F. Ouallouche, and S. Ameur, "Quantitative Estimation of Rainfall from Remote Sensing Data Using Machine Learning Regression Models," Hydrology, vol. 10, no. 2, 2023, Art. no. 52.
[7] F. Ouallouche, M. Lazri, and S. Ameur, "Improvement of rainfall estimation from MSG data using Random Forests classification and regression," Atmospheric Research, vol. 211, pp. 62-72, 2018.
[8] Y. Lyu and B. Yong, "A novel Double Machine Learning strategy for producing high‐precision multi‐source merging precipitation estimates over the Tibetan Plateau," Water Resources Research, vol. 60, no. 4 , 2024, Art. no. e2023WR035643.
[9] J. R. Vergara and P. A. Estévez, "A review of feature selection methods based on mutual information," Neural Computing and Applications, vol. 24, pp. 175-186, 2014.
[10] J. D. Brown, "Point-biserial correlation coefficients," Statistics, vol. 5, no. 3, pp. 6-12, 2001.
[11] L. Čehovin and Z. Bosnić, "Empirical evaluation of feature selection methods in classification," Intelligent Data Analysis, vol. 14, no. 3, pp. 265-281, 2010.
[12] P. M. Granitto, C. Furlanello, F. Biasioli, and F. Gasperi, "Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products," Chemometrics and Intelligent Laboratory Systems, vol. 83, no. 2, pp. 83-90, 2006.
[13] T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, August 2016, pp. 785-794.
DOI: https://doi.org/10.34238/tnu-jst.11346
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





