ĐẢM BẢO AN TOÀN THÔNG TIN TRONG PHÂN TÍCH ĐỘT BIẾN GEN: TRỰC QUAN HOÁ DỮ LIỆU VÀ ỨNG DỤNG GAN ĐỂ PHÂN LOẠI UNG THƯ
Thông tin bài báo
Ngày nhận bài: 23/10/24                Ngày hoàn thiện: 18/12/24                Ngày đăng: 18/12/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] I. Tomlinson, P. Sasieni, and W. Bodmer, “How many mutations in a cancer?” The American Journal of Pathology, vol. 160, no. 3, pp. 755-758, 2020.
[2] S. Wang, J. Shi, Z. Ye, D. Dong, D. Yu, M. Zhou, Y. Liu, O. Gevaert, K. Wang, Y. Zhu et al., “Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning,” European Respiratory Journal, vol. 53, no. 3, 2019, doi: 10.1183/13993003.00986-2018.
[3] M. K. K. Leung, A. Delong, B. Alipanahi, and B. J. Frey, “Machine learning in genomic medicine: a review of computational problems and data sets,” Proceedings of the IEEE, vol. 104, no. 1, pp. 176-197, 2015.
[4] K.-H. Yu, C. Zhang, G. J. Berry, R. B. Altman, C. Ré, D. L. Rubin, and M. Snyder, “Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features,” Nature Communications, vol. 7, no. 1, 2016, Art. no. 12474.
[5] H. Wang, C. Wang, and H. Qu, “Deep neural network for somatic mutation classification,” Scientific Programming, vol. 2021, no. 1, 2021, Art. no. 5529202.
[6] P. Sanjaya, K. Maljanen, R. Katainen, S. M. Waszak, L. A. Aaltonen, O. Stegle, J. O. Korbel, and E. Pitk¨anen, “Mutation-attention (muat): deep representation learning of somatic mutations for tumour typing and subtyping,” Genome Medicine, vol. 15, no. 1, 2023, Art. no. 47.
[7] K. Krishnamachari, D. Lu, A. Swift-Scott, A. Yeraliyev, K. Lee, W. Huang, S. N. Leng, and A. J. Skanderup, “Accurate somatic variant detection using weakly supervised deep learning,” Nature Communications, vol. 13, no. 1, 2022, Art. no. 4248.
[8] Y. Sun, S. Zhu, K. Ma, W. Liu, Y. Yue, G. Hu, H. Lu, and W. Chen, “Identification of 12 cancer types through genome deep learning,” Scientific Reports, vol. 9, no. 1, 2019, Art. no. 17256.
[9] D. Ravì, C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo, and G.-Z. Yang, “Deep learning for health informatics,” IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 1, pp. 4-21, 2016.
[10] M. Durgadevi et al., “Generative Adversarial Network (GAN): A general review on different variants of GAN and applications,” in 2021 6th International Conference on Communication and Electronics Systems (ICCES), 2021, pp. 1-8.
[11] P. Chaudhari, H. Agrawal, and K. Kotecha, “Data augmentation using mg-gan for improved cancer classification on gene expression data,” Soft Computing, vol. 24, pp. 11 381-11 391, 2020.
DOI: https://doi.org/10.34238/tnu-jst.11388
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu
 





