VẬT LIỆU BIẾN HÓA CẤU TRÚC ĐA LỚP HẤP THỤ BĂNG TẦN RỘNG, CÓ TÍNH NĂNG ĐÀN HỒI HOẠT ĐỘNG TRONG VÙNG TẦN SỐ GHz
Thông tin bài báo
Ngày nhận bài: 26/10/24                Ngày hoàn thiện: 29/11/24                Ngày đăng: 30/11/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] R. A. Shelby, D. R. Smith, and S. Shultz, "Experimental Verification of a Negative Index of Refraction," Science, vol. 292, no. 5514, pp. 77-79, 2001.
[2] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science, vol. 305, pp. 788-792, 2014.
[3] Z. Duan, X. Tang, Z. Wang, Y. Zhang, X. Chen, M. Chen, and Y. Gong, “Observation of the reversed Cherenkov radiation,” Nat. Commun., vol. 8, no. 1, 2017, Art. no. 14901.
[4] N. Seddon and T. Bearpark, “Observation of the Inverse Doppler Effect,” Science, vol. 302, no. 5650, pp. 1537-1540, 2003.
[5] L. Zhu and L. Dong, “Electromagnetically induced transparency metamaterials: theories, designs and applications,” J. Phys. D: Appl. Phys., vol. 55, no. 26, 2022, Art. no. 263003.
[6] V. G. Veselago, “The electrodynamics of sbstances with simultaneously negative values of and ,” Sov. Phys. Uspekhi, vol. 10, no. 4, pp. 509-514, 1968.
[7] M. R. Islam, M. T. Islam, B. Bais, S. H. Almalki, H. Alsaif, and M. S. Islam, “Metamaterial sensor based on rectangular enclosed adjacent triple circle split ring resonator with good quality factor for microwave sensing application,” Sci. Rep., vol. 12, no. 1, 2022, Art. no. 6792.
[8] L. Ma, D. Chen, W. Zheng, J. Li, S. Zahra, Y. Liu, Y. Zhou, Y. Huang, and G. Wen, “Advanced Electromagnetic Metamaterials for Temperature Sensing Applications,” Front. Phys., vol. 9, 2021, Art. no. 657790.
[9] K. N. Olan-Nuñez, and R. S. Murphy-Arteaga, “A novel metamaterial-based antenna for on-chip applications for the 72.5–81 GHz frequency range,” Sci. Rep., vol. 12. no. 1, 2022, Art. no. 1699.
[10] Z. Huang and B. Wang, “Ultra-broadband metamaterial absorber for capturing solar energy from visible to near infrared,” Surfaces and Interfaces, vol. 33, 2022, Art. no. 102244.
[11] T. H. H. Le, H. N. Bui, S. T. Bui, D. L. Vu, X. K. Bui, and T. S. Pham, “Enhanced efficiency of magnetic resonant wireless power transfer system using rollable and foldable metasurface based on polyimide substrate,” Appl. Phys. A, vol. 130, no. 7, 2024, Art. no. 521.
[12] X. K. Bui, V. N. Nguyen, N. D. Dinh, P. H. Nguyen, T. T. Nguyen, S. T. Bui, D. L. Vu, T. G. Ho, D. T. Pham and Y. Lee, “Dual-band infrared metamaterial perfect absorber for narrow-band thermal emitters,” J. Phys. D: Appl. Phys., vol. 57, no. 28, 2024, Art. no. 285501.
[13] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett., vol. 100, no. 20, 2008, Art. no. 207402.
[14] W. Zuo, Y. Yang, X. He, D. Zhan, and Q. Zhang, “A miniaturized metamaterial absorber for ultrahigh-frequency RFID system,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 329-332, 2016.
[15] J. Mizeraczyk and M. Budnarowska, “Microwave Metamaterial Absorber with Radio Frequency/Direct Current Converter for Electromagnetic Harvesting System,” Electronics, vol. 13, no. 5, Art. no. 833, 2024.
[16] Z. Luo, S. Ji, J. Zhao, H. Wu, and H. Dai, “A multiband metamaterial absorber for GHz and THz simultaneously,” Results Phys., vol. 30, 2021, Art. no. 104893.
[17] H. Sudarsan, K. Mahendran, and S. Rathika, “Design of microwave metamaterial absorber for Ku-, X, and C-band applications,” Results Opt., vol. 15, 2024, Art. no. 100653.
[18] Y. Zhou, Z. Qin, Z. Liang, D. Meng, H. Xu, D. R. Smith, and Y. Liu, “Ultra-broadband metamaterial absorbers from long to very long infrared regime,” Light Sci. Appl., vol. 10, no. 1, 2021, Art. no. 138.
[19] P. Li, P. Zhou, Y. Liu, and X. Wang, “Electrically switchable metamaterial absorber in visible range based on micro-electro-mechanically system,” Results Phys., vol. 51, 2023, Art. no. 106569.
[20] X. K. Bui, N. V. Ngo, T. S. Pham, H. N. Bui, H. A. Nguyen, T. C. Do, P. H. Nguyen, S. T. Bui, D. L. Vu, H. Zheng, L. Y. Chen, and Y. Lee, “Multi-Layered Metamaterial Absorber Electromagnetic and Thermal Characterization,” Photonics, vol. 11, no. 3, 2024, Art. no. 11030219.
[21] G. Deng, K. Lv, H. Sun, Y. Hong, X. Zhang, Z. Yin, Y. Li, and J. Yang, “An ultra-wideband, polarization insensitive metamaterial absorber based on multiple resistive film layers with wide-incident-angle stability,” Int. J. Microw. Wirel. Technol., vol. 13, no. 1, pp. 1-9, 2020.
[22] K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express, vol. 20, pp. 635-643, 2012.
[23] A. Sadeqi, H. R. Nejad, and S. Sonkusale, “Low-cost metamaterial-on-paper chemical sensor,” Opt. Express, vol. 25, pp. 16092-16100, 2017.
[24] W. Xin, Z. Binzhen, W. Wanjun, W. Junlin, and D. Junping, “Design, fabrication, and characterization of a flexible dual-band metamaterial absorber,” IEEE Photonics J., vol. 9, pp. 1-12, 2017.
[25] G. Dayal, and S. A. J. Ramakrishna, “High temperature VO2 based microbolometer with enhanced light absorption,” Phys. D Appl. Phys., vol. 48, 2014, Art. no. 035105.
[26] H. K. Kim, K. Ling, K. Kim, and S. Lim, “Flexible inkjet-printed metamaterial absorber for coating a cylindrical object,” Opt. Express, vol. 23, pp. 5898-5906, 2015.
[27] CST Studio Suite. [CD-ROM]. Vélizy-Villacoublay, 78140, France: Dassault Systèmes, 2023.
[28] C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley and Sons: Hoboken, NJ, USA, 1989.
[29] S. D. Assimonis and V. Fusco, “Polarization insensitive, wide-angle, ultra-wideband, flexible, resistively loaded, electromagnetic metamaterial absorber using conventional inkjet-printing technology,” Sci. Rep., vol. 9, no. 1, 2019, Art. no. 12334.
[30] V. L. Le, S. K. Nguyen, S. T. Bui, T. T. Nguyen, T. G. Trinh, T. S. Pham, X. K. Bui, D. L. Vu, L. Chen, H. Zheng, and Y. Lee, “Flexible broadband metamaterial perfect absorber based on graphene-conductive inks,” Photonics, vol. 8, no. 10, 2021, Art. no. 440.
DOI: https://doi.org/10.34238/tnu-jst.11409
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu