KẾT HỢP XỬ LÝ ẢNH VÀ NGHIÊN CỨU LIÊN KẾT TRÊN TOÀN HỆ GEN ĐỂ PHÁT HIỆN CÁC LÔ-CUT TÍNH TRẠNG SỐ LƯỢNG LIÊN QUAN ĐẾN KÍCH THƯỚC CỦA HẠT THÓC
Thông tin bài báo
Ngày nhận bài: 03/12/24                Ngày hoàn thiện: 27/03/25                Ngày đăng: 28/03/25Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] T. Mark and P. Langridge. "Breeding technologies to increase crop production in a changing world," Science, vol. 327, no. 5967, pp. 818-822, 2010, doi: 10.1126/science.1183700.
[2] W. Michelle et al., "Phenotyping: new windows into the plant for breeders," Annual review of plant biology, vol. 71, pp. 689-712, 2020, doi: 10.1146/annurev-arplant-042916-041124.
[3] S. Dawei et al., "Advances in optical phenotyping of cereal crops," Trends in plant science, vol. 27, no. 2, pp. 191-208, 2022, doi: 10.1016/j.tplants.2021.07.015.
[4] H. Chenglong et al., "Development of a whole-feeding and automatic rice thresher for single plant," Mathematical and Computer Modelling, vol. 58, no. 3-4, pp. 684-690, 2013, doi: 10.1016/j.mcm.2011.10.033.
[5] W. P. Alex et al., "GrainScan: a low cost, fast method for grain size and colour measurements," Plant methods, vol. 10, pp. 1-10, 2014, doi: 10.1186/1746-4811-10-23.
[6] Y. Wanneng et al., "Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives," Molecular plant, vol. 13, no. 2, pp. 187-214, 2020, doi: 10.1016/j.molp.2020.01.008.
[7] W. Dong et al., "The development of a vision-based phenotypic analysis algorithm for measuring spikelet-related traits in rice," Plant Physiology Journal, vol. 58, no. 5, pp. 957-971, 2022, doi: 10.13592/j.cnki.ppj.200009.
[8] S. Lin and P. Chen, "A method for characterizing the panicle traits in rice based on 3D micro-focus X-ray computed tomography," Computers and Electronics in Agriculture, vol. 166, 2019, Art. no. 104984, doi: 10.1016/j.compag.2019.104984.
[9] H. Weijuan et al., "Nondestructive 3D image analysis pipeline to extract rice grain traits using X-ray computed tomography," Plant Phenomics, 2020, doi: 10.34133/2020/3414926.
[10] Y. Lejun et al., "An integrated rice panicle phenotyping method based on X-ray and RGB scanning and deep learning," The Crop Journal, vol. 9, no. 1, pp. 42-56, 2021, doi: 10.1016/j.cj.2020.06.009.
[11] L. Yuwei et al., "High-throughput and separating-free phenotyping method for on-panicle rice grains based on deep learning," Frontiers in Plant Science, vol. 14, 2023, Art. no. 1219584, doi: 10.3389/fpls.2023.1219584.
[12] N. T. P. Mai, L. T. T. Nguyen, and H. T. M. To, “Genome-wide association studies for identification of genes and QTLs controlling the palmitic acid content in rice bran oil,” Vietnam Journal of Biotechnology, vol. 21, no. 2, pp. 337-345, 2023, doi: 10.15625/1811-4989/18607.
[13] N. T. P. Mai, Q. K. Le, T. Q. A. Chu, and H. T. M. To, “Genome wide association studies analysis of the natural ability of uptaking the phosphate in Vietnamese rice landraces,” Vietnam Journal of Biotechnology, vol. 19, no. 4, pp. 677-686, 2021, doi: 10.15625/1811-4989/15374.
[14] N. T. P. Mai, L. T. T. Nguyen, S. G. Tran, et al., “Genome-wide association study reveals useful QTL and genes controlling the fatty acid composition in rice bran oil using Vietnamese rice landraces,” Funct. Integr. Genomics, vol. 23, article no. 150, 2023, doi: 10.1007/s10142-023-01080-6.
[15] G. S. Tran, Q. H. Nguyen, L. T. T. Nguyen, et al., “Unraveling New Genetic Elements Associated with the Morphological Changes and Relative Silicon Content in Rice Using Genome-Wide Association Studies (GWAS),” J. Plant Biol., vol. 67, pp. 467-480, 2024, doi: 10.1007/s12374-024-09448-2.
[16] N. T. P. Phung, C. D. Mai, P. Mournet, et al., “Characterization of a panel of Vietnamese rice varieties using DArT and SNP markers for association mapping purposes,” BMC Plant Biol., vol. 14, article no. 371, 2014, doi: 10.1186/s12870-014-0371-7.
[17] B. M. Chu, H. T. M. To, and G. S. Tran, "Rice Grain Trait Estimation Using Color Space Conversion and Deep Learning-based Image Segmentation," TNU Journal of Science and Technology, vol. 229, pp. 133-140, 2024, doi: 10.34238/tnu-jst.10191.
[18] P. J. Bradbury, Z. Zhang, D. E. Kroon, T. M. Casstevens, Y. Ramdoss, and E. S. Buckler, “TASSEL: Software for association mapping of complex traits in diverse samples,” Bioinformatics, vol. 23, pp. 2633-2635, 2007, doi: 10.1093/bioinformatics/btm308.
[19] R Core Team, "R: A language and environment for statistical computing," 2024. [Online]. Available: https://www.R-project.org/. [Accessed December 4, 2024].
[20] K. Yoshihiro et al., "Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data," Rice, vol. 6, pp. 1-10, 2013, doi: 10.1186/1939-8433-6-4.
[21] C. Fan, Y. Xing, H. Mao, T. Lu, B. Han, C. Xu, X. Li, and Q. Zhang, “GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein,” Theor. Appl. Genet., vol. 112, pp. 1164-1171, 2006.
[22] C. Xu, Y. Liu, Y. Li, X. Xu, C. Xu, X. Li, J. Xiao, and Q. Zhang, “Differential expression of GS5 regulates grain size in rice,” J. Exp. Bot., vol. 66, pp. 2611-2623, 2015.
[23] J. Weng, S. Gu, X. Wan, H. Gao, T. Guo, N. Su, C. Lei, X. Zhang, Z. Cheng, X. Guo, et al., “Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight,” Cell Res., vol. 18, pp. 1199-1209, 2008.
[24] C. L. Shi, N. Q. Dong, T. Guo, W. W. Ye, J. X. Shan, and H. X. Lin, “A quantitative trait locus GW6 controls rice grain size and yield through the gibberellin pathway,” Plant J., vol. 103, no. 3, pp. 1174-1188, 2020, doi: 10.1111/tpj.14793.
[25] Y. Wang, G. Xiong, J. Hu, L. Jiang, H. Yu, J. Xu, Y. Fang, L. Zeng, E. Xu, J. Xu, et al., “Copy number variation at the GL7 locus contributes to grain size diversity in rice,” Nat. Genet., vol. 47, pp. 944-948, 2015.DOI: https://doi.org/10.34238/tnu-jst.11646
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





