PHÂN LẬP VÀ TUYỂN CHỌN CHỦNG VI KHUẨN ACID LACTIC ƯA FRUCTOSE TỪ SÁP ONG CÓ KHẢ NĂNG CHỊU ĐƯỢC MÔI TRƯỜNG ĐƯỜNG RUỘT MÔ PHỎNG | Phương | TNU Journal of Science and Technology

PHÂN LẬP VÀ TUYỂN CHỌN CHỦNG VI KHUẨN ACID LACTIC ƯA FRUCTOSE TỪ SÁP ONG CÓ KHẢ NĂNG CHỊU ĐƯỢC MÔI TRƯỜNG ĐƯỜNG RUỘT MÔ PHỎNG

Thông tin bài báo

Ngày nhận bài: 13/01/25                Ngày hoàn thiện: 01/07/25                Ngày đăng: 01/07/25

Các tác giả

1. Trần Vũ Phương, Viện Công nghệ Sinh học và Thực phẩm - Đại học Cần Thơ
2. Huỳnh Ngọc Thanh Tâm, Viện Công nghệ Sinh học và Thực phẩm - Đại học Cần Thơ
3. Huỳnh Thị Như Ý, Viện Công nghệ Sinh học và Thực phẩm - Đại học Cần Thơ
4. Ca Thúy Linh, Viện Công nghệ Sinh học và Thực phẩm - Đại học Cần Thơ
5. Nguyễn Hưng Thịnh, Viện Công nghệ Sinh học và Thực phẩm - Đại học Cần Thơ
6. Huỳnh Yến Nhi Email to author, Viện Công nghệ Sinh học và Thực phẩm - Đại học Cần Thơ

Tóm tắt


Nghiên cứu đã phân lập được 22 chủng vi khuẩn acid lactic ưa fructose từ ba mẫu sáp ong tại thành phố Cần Thơ, tỉnh Đắk Lắk và tỉnh An Giang. Kết quả nghiên cứu cho thấy 15 chủng phân lập có khả năng sống tốt trong môi trường pH thấp với tỷ lệ sống sót của từng chủng dao động từ 39% đến 97,5%. Các chủng vi khuẩn này có khả năng chịu được môi trường bổ sung 0,3% muối mật. Trong đó, 9 chủng có tỷ lệ sống sót cao nhất tại cả ba loại môi trường đường ruột mô phỏng, với tỷ lệ sống sót của từng chủng đều trên 80%. Đặc biệt, chủng vi khuẩn AG11 là chủng có nhiều tiềm năng khi đạt tỷ lệ sống sót ở pH từ 2 đến 3 đều trên 90%, với khả năng chịu được muối mật, môi trường khoang miệng, dạ dày và ruột non với tỷ lệ sống sót đạt lần lượt là 96,4; 98,9; 95 và 79,1%. Kết quả giải trình tự đoạn gen 16S rRNA cho thấy chủng vi khuẩn AG11 là chủng Lactiplantibacillus plantarum  Lactiplantibacillus pentosus với độ tương đồng là 99,45%. Với kết quả nghiên cứu này, chủng vi khuẩn Lactiplantibacillus AG11 là chủng vi khuẩn ưa fructose tiềm năng trong ứng dụng sản xuất các sản phẩm probiotic trong tương lai.

Từ khóa


Sáp ong; Muối mật; Vi khuẩn acid lactic ưa fructose; pH thấp; Probiotic

Toàn văn:

PDF

Tài liệu tham khảo


[1] A. Zapaśnik, B. Sokołowska, and M. Bryła, “Role of lactic acid bacteria in food preservation and safety,” Foods (Basel, Switzerland), vol. 11, no. 9, 2022, Art. no. 1283.

[2] M. H. Floch, W. A. Walker, and M. E. Sanders, “Recommenda-tions for probiotic use–2015 update: Proceedings and consensusopinion,” Journal of Clinical Gastroenterology, vol. 49, no. Suppl. 1, pp. 69–73, 2018.

[3] N. B. Kristensen, T. Bryrup, and K. H. Allin, “Alterations in fecalmicrobiota composition by probiotic supplementation in healthyadults: A systematic review of randomized controlled trials,” Gen-ome Medicine, vol. 8, 2016, Art. no. 52.

[4] E. Razmpoosh, A. Javadi, H. S. Ejtahed, P. Mirmiran, M. Javadi, and A. Yousefinejad, “The effect of probiotic supplementation on glycemic control and lipid profile in patients with type 2 diabetes: A randomized placebo controlled trial,” Diametes & Metabolic Syndrome: Clinical Research & Reviews, vol. 13, no. 1, pp. 175-182, 2019.

[5] H. S. Ejtahed, R. Y. Tito, S. D. Siadat, S. H. Ranjbar, Z. H. Tavassol, L. Rymenans, K. Verbeke, A. R. Soroush, J. Raes, and B. Larijani, “Metformin induces weight loss associated with gut microbiota alteration in non-diabetic obese women: A randomized double-blind clinical trial,” Eur. J. Endocrinol, vol. 180, no. 3, pp. 165-176, 2019.

[6] S. Sangwan and R. Singh, “Synergistic effect of oats and LGG fermented milk on lowering hypercholesterolemia in rats,” Journal of Cereal Science, vol. 82, pp. 164-169, 2018.

[7] S. Dasari, C. Kathera, A. Janardhan, A. P. Kumar, and B. Viswanath, “Surfacing role of probiotics in cancer prophylaxis and therapy: A systematic review,” Clinical Nutritioni, vol. 36, no. 6, pp. 1465-1472, 2017.

[8] D. Bulgarelli1, K. Schlaeppi, S. Spaepen, E. V. L. Themaat, and P. S. Lefert, “Structure and functions of the bacterial microbiota of plants,” Annual Review of Plant Biology, vol. 64, no. 1, 2013, doi: 10.1146/annurev-arplant-050312-120106.

[9] Y. Wang, J. Wu, M. Lv, Z. Shao, M. Hungwe, J. Wang, and W. Geng. “Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry,” Frontiers in Bioengineering and Biotechnology, vol. 9, 2021, Art. no. 612285.

[10] A. Endo and S. Okada, “Reclassification of the genus Leuconostoc and proposals of Fructobacillus fructosus gen. nov., comb. nov., Fructobacillus durionis comb. nov., Fructobacillus ficulneus comb. nov. and Fructobacillus pseudoficulneus comb. Nov,” Int. J. Syst. Evol. Microbiol, vol. 58, pp. 2195–2205, 2008.

[11] A. Pachla et al., “Fascinating fructophilic lactic acid bacteria associated with various fructose-rich niches,” Annales Universitatis Mariae Curie-Sklodowska, section C–Biologia, vol. 72, no. 2, pp. 41-50, 2019.

[12] A. Endo and S. Salminen, “Honeybees and beehives are rich sources for fructophilic lactic acid bacteria,” Syst. Appl. Microbiol., vol. 36, pp. 444–448, 2013.

[13] A. Abdelazez, H. Abdelmotaal, S. E. Evivie, M. Bikheet, R. Sami, H. Mohamed, and X. Meng, “Verification of Lactobacillus brevis tolerance to simulated gastric juice and the potential effects of postbiotic gamma-aminobutyric acid in streptozotocin-induced diabetic mice,” Food Science and Human Wellness, vol. 11, no. 1, pp. 165-176, 2022.

[14] J. Sambrook and D. W. Russell, Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, New York, vol. 1, 2001.

[15] S. Fujimori, “Gastric acid level of humans must decrease in the future,” World J. Gastroenterol, vol. 26, no. 43, pp. 6706–6709, 2020.

[16] M. M. Ayyash, A. K. Abdalla, N. S. AlKalbani, M. A. Baig, M. S. Turner, S. Q. Liu, and N. P. Shah, “Invited review: Characterization of new probiotics from dairy and nondairy products-Insights into acid tolerance, bile metabolism and tolerance, and adhesion capability,” Journal of Dairy Science, vol. 104, no. 8, pp. 8363-8379, 2022.

[17] C. Sohlenkamp, “Membrane Homeostasis in Bacteria upon pH Challenge,” in Biogenesis of Fatty Acids, Lipids and Membranes, Springer, 2017, pp. 1-13.

[18] N. Guan and L. Liu, “Microbial response to acid stress: mechanisms and applications,” Appl. Microbiol Biotechnol, vol. 104, no. 1, pp. 51-65, 2020.

[19] Y. Tian, W. Gui, I. Koo, P. B. Smith, E. L. Allman, R. G. Nichols, B. Rimal, J. Cai, Q. Liu, and A.D. Patterson, “The microbiome modulating activity of bile acids,” Gut Microbes, vol. 11, no. 4, pp. 979-996, 2020.

[20] S. Han, Y. Lu, J. Xie, Y. Fei, G. Zheng, Z. Wang, J. Liu, L. Lv, Z. Ling, B. Berglund, M. Yao, and L. Li, “Probiotic gastrointestinal transit and colonization after oral administration: A long journey,” Front Cell Infect Microbiol, vol. 11, 2021, Art. no. 609722.

[21] M. C. Nandha and R. M. Shukla, “Exploration of probiotic attributes in lactic acid bacteria isolated from fermented Theobroma cacao L. fruit using in vitro techniques,” Front. Microbiol., vol. 14, 2023, Art. no. 1274636.

[22] W. Zhang, S. Lai, Z. Zhou, J. Yang, H. Liu, Z. Zhong, H. Fu, Z. Ren, L. Shen, S. Cao, L. Deng, and G. Peng, “Screening and evaluation of lactic acid bacteria with probiotic potential from local Holstein raw milk,” Front. Microbiol., vol. 13, 2022, Art. no. 2918774.

[23] G. V. Pereira, B. D. O. Coelho, A. I. M. Júnior, V. Thomaz-Soccol, and C. R. Soccol, “How to select a probiotic? A review and update of methods and criteria,” Biotechnol. Adv., vol. 36, pp. 2060–2076, 2018.

[24] W. Liu, M. C. Hen, L. Duo, J. Wang, S. Guo, H. Sun, B. Mengh, and H. Zhang, “Characterization of potentially probiotic lactic acid bacteria and bifidobacteria isolated from human colostrum,” J. Dairy Sci., vol. 103, pp. 4013–4025, 2020.

[25] M. Derrien and J. E. T. F. H. Vlieg, “Activity, and impact of ingested bacteria within the human gut microbiota,” Trends Microbiol, vol. 23, pp. 354-366, 2015.

[26] R. Yesica, V. B. Rogelio, C. G. Concepción, M. L. Chikindas, and P. A. Edith, “Probiotic and functional potential of lactic acid bacteria isolated from pulque and evaluation of their safety for food applications,” Front. Microbiol., vol. 14, 2023, Art. no. 1241581.

[27] W. Xue, C. Liu, Y. Liu, H. Ding, C. An, S. Zhang, S. Ma, and Q. Zhang, “Probiotic evaluation of Lactiplantibacillus pentosus 68-1, a Rutin conversion strain isolated from Jiangshui, by genomic analysis and tests in vitro,” Fermentation, vol. 10, 2024, Art. no. 87.

[28] Z. Wang, J. Wu, Z. Tian, Y. Si, H. Chen, and J. Gan, “The mechanisms of the potential Probiotic Lactiplantibacillus plantarum against Cardiovascular disease and the recent developments in its fermented foods,” Foods, vol. 11, 2022, Art. no. 2549.

[29] A. Endo, Y. Futagawa-Endo, M. Sakamoto, M. Kitahara, and L. M. Dicks, “Lactobacillus florumsp. nov., a fructophilic species isolated from flowers,” Int. J. Syst. Evol. Microbiol, vol. 60, pp. 2478–2482, 2010.

[30] G. He, H. Long, J. He, and C. Zhu, “The immunomodulatory effects and applications of probiotiLactiplantibacillus plantarum in vaccine development,” Probiotics and Antimicrobial Proteins, vol. 16, no. 6, pp. 1 – 22, 2024.

[31] M. Iorizzo, C. Di Martino, F. Letizia, T. W. Crawford, and G. Paventi, “Production of conjugated linoleic acid (CLA) by Lactiplantibacillus plantarum: A review with emphasis on fermented foods,” Foods (Basel, Switzerland), vol. 13, no. 7, 2024, Art. no. 975.

[32] S. S. Behera, R. C. Ray, and N. Zdolec, “Lactobacillus plantarum with functional properties: An approach to increase safety and shelf-life of fermented foods,” BioMed Research International, vol. 2018, 2018, Art. no. 9361614.

[33] R.-H. Liu, A.-Q. Sun, Y. Liao, Z.-X. Tang, S.-H. Zhang, X. Shan, and J.-T. Hu, “Lactiplantibacillus plantarum regulated intestinal microbial community and cytokines to inhibit Salmonella typhimurium infection,” Probiotics and Antimicrobial Proteins, vol. 15, no. 5, pp. 1355–1370, 2023.

[34] Z. Zhang, H. Niu, Q. Qu, D. Guo, X. Wan, Q. Yang, Z. Mo, S. Tan, Q. Xiang, X. Tian, H. Yang, and Z. Liu. “Advancements in Lactiplantibacillus plantarum: probiotic characteristics, gene editing technologies and applications,” Critical Reviews in Food Science and Nutrition, pp. 1-22, 2025, doi: 10.1080/10408398.2024.2448562




DOI: https://doi.org/10.34238/tnu-jst.11872

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved