ĐÁNH GIÁ CÁC THUẬT TOÁN PHÁT HIỆN LỖI BẢNG MẠCH IN DỰA TRÊN FASTER R-CNN VÀ YOLOV8
Thông tin bài báo
Ngày nhận bài: 24/01/25                Ngày hoàn thiện: 19/03/25                Ngày đăng: 19/03/25Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] Q. Zhang and H. Liu, “Multi-scale defect detection of printed circuit board based on feature pyramid network,” in IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), 2021, pp. 911-914.
[2] H. Suzuki, “Printed Circuit Board,” Official Gazette of the United States Patent and Trademark Office, U.S. Patent 4,640,866, Mar. 16, 1987.
[3] H. S. Cho, “Printed Circuit Board,” Samsung Electro Mechanics Co., Ltd. Official Gazette of the United States Patent and Trademark, U.S. Patent 8,159,824, Mar. 16, 2012.
[4] M. X. Zhao, Z. Wang, and Y. Wu, "A Dataset for Deep Learning Based Detection of Printed Circuit Board Defects," Sci. Data, vol. 11, no. 1, pp. 1–8, 2024, doi: 10.1038/s41597-024-03656-8.
[5] D. B. Anitha and M. Rao, “A survey on defect detection in bare PCB and assembled PCB using image processing techniques,” in Proc. Int. Conf. Wireless Commun., Signal Process. Netw. (WiSPNET), Mar. 2017, pp. 39–43.
[6] V. A. Adibhatla, “Applying deep learning to defect detection in printed circuit boards via a newest model of you-only-look-once,” Mathematical Biosciences and Engineering, vol. 18, no. 4, pp. 4411-4428, 2021.
[7] W. Chen, Z. Huang, Q. Mu, and Y. Sun, "PCB defect detection method based on transformer-YOLO," IEEE Access, vol. 10, pp. 129480–129489, 2022, doi: 10.1109/ACCESS.2022.3228206.
[8] W. Liu and Y. Zhang, "Real-time PCB defect detection using SSD for industrial applications," J. Electron. Imaging, vol. 29, no. 2, 2020, Art. no. 023005, doi: 10.1117/1.JEI.29.2.023005.
[9] B. Hu and J. Wang, "Detection of PCB Surface Defects with Improved Faster-RCNN and Feature Pyramid Networks,” in IEEE Access, vol. 8, pp. 108335-108345, 2020.
[10] F. Fan, B. Wang, G. Zhu, and J. Wu, "Efficient Faster R-CNN: Used in PCB solder joint defects and components detection," in Proc. IEEE 4th Int. Conf. Comput. Commun. Eng. Technol. (CCET), Beijing, China, 2021, pp. 1–5, doi: 10.1109/CCET52649.2021.9544356.
[11] H. Xu and W. Wang, "Defect detection in PCB manufacturing using R-FCN-based deep learning model," IEEE Access, vol. 9, pp. 123567-123577, 2021, doi: 10.1109/ACCESS.2021.3112345.
[12] Y. Long, Z. Li, Y. Cai, R. Zhang, and K. Shen, “PCB defect detection algorithm based on improved YOLOv8,” Academ. J. Sci. Technol., vol. 7, no. 3, pp. 297–304, 2023, doi: 10.54097/ajst.v7i3.13420.
[13] RangeKing, "Brief summary of YOLOv8 model structure," GitHub, Jan. 10, 2023. [Online]. Available: https://github.com/ultralytics/ultralytics/issues/189. [Accessed Jan. 17, 2025].
[14] TigerZ, "Target detection algorithm - YOLOV8 - algorithm details," CSDN, March. 2, 2023.
[15] Z. Xiong, "A Design of Bare Printed Circuit Board Defect Detection System Based on YOLOv8," Highlights in Science, Engineering and Technology, vol. 57, pp. 203-209, Jul. 2023.
[16] P. Huang and P. Wei, “A PCB dataset for defects detection and classification,” arXiv preprint arXiv:1901.08204, 2019.
[17] R. Ding, L. Dai, G. Li, and H. Liu, "TDD-net: a tiny defect detection network for printed circuit boards," CAAI Transactions on Intelligence Technology, vol. 4, no. 2, pp. 110-116, Jun. 2019, doi: 10.1049/trit.2019.0019.
[18] P. V. Viet, "A combination of Faster R-CNN and YOLOv2 for drone detection in images," TNU Journal of Science and Technology, vol. 226, no. 06, pp. 90–96, May 2021.
DOI: https://doi.org/10.34238/tnu-jst.11949
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu