HỆ THỐNG PHÂN TÍCH KÍCH THƯỚC HẠT THÓC PHỤC VỤ CHỌN TẠO GIỐNG
Thông tin bài báo
Ngày nhận bài: 14/02/25                Ngày hoàn thiện: 06/03/25                Ngày đăng: 07/03/25Tóm tắt
Từ khóa
Tài liệu tham khảo
[1] N. Childs and P. Jarrell, “Rice Outlook: January 2025,” USDA’s World Agricultural Outlook Board, Jan. 2025.
[2] M. S. Alam, M. A. Wazed, S. M. K. Hasan, M. Ahmed, M. S. Alam, and M. S. H. Sarker, “Quality aspects of paddy grain and seed dried in HSTU mobile grain and seed dryer integrated with a dual heating system,” Heliyon, vol. 10, no. 23, Dec. 2024, doi: 10.1016/j.heliyon.2024.e40835.
[3] R. Wimalasekera, “Role of seed quality in improving crop yields,” in Crop Production and Global Environmental Issues, Springer International Publishing, 2015, pp. 153–168, doi: 10.1007/978-3-319-23162-4_6.
[4] S. Chowdhury, M. Chowdhury, S. Bhattacherjee, and K. Ghosh, “Quality assessment of rice seed using different storage techniques,” Journal of the Bangladesh Agricultural University, vol. 12, no. 2, pp. 297-305, Jul. 2016, doi: 10.3329/jbau.v12i2.28688.
[5] D. Ren, C. Ding, and Q. Qian, “Molecular bases of rice grain size and quality for optimized productivity,” Sci Bull (Beijing), vol. 68, no. 3, pp. 314–350, Feb. 2023, doi: 10.1016/j.scib.2023.01.026.
[6] L. Yan et al., “Control of grain size and weight by the RNA-binding protein EOG1 in rice and wheat,” Cell Rep., vol. 43, no. 11, Nov. 2024, doi: 10.1016/j.celrep.2024.114856.
[7] K. Kiratiratanapruk et al., “Development of Paddy Rice Seed Classification Process using Machine Learning Techniques for Automatic Grading Machine,” J. Sens., vol. 2020, 2020, doi: 10.1155/2020/7041310.
[8] A. Feng et al., “Research on a rice counting algorithm based on an improved mcnn and a density map,” Entropy, vol. 23, no. 6, Jun. 2021, doi: 10.3390/e23060721.
[9] J. Peng, Z. Yang, D. Lv, and Z. Yuan, “A dynamic rice seed counting algorithm based on stack elimination,” Measurement, vol. 227, Mar. 2024, Art. no. 114275, doi: 10.1016/ j.measurement.2024.114275.
[10] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” Springer, Cham, pp. 234-241, May 2015, doi: 10.1007/978-3-319-24574-4_28.
[11] K. Zhang, L. Zhang, and H. Pan, “UoloNet: based on multi-tasking enhanced small target medical segmentation model,” Artif. Intell. Rev., vol. 57, no. 2, Feb. 2024, doi: 10.1007/s10462-023-10671-5.
[12] S. Liu et al., “High-throughput measurement method for rice seedling based on improved UNet model,” Comput. Electron. Agric., vol. 219, Apr. 2024, doi: 10.1016/j.compag.2024.108770.
[13] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation,” IEEE Trans Med Imaging, vol. 39, no. 6, pp. 1856–1867, Jun. 2020, doi: 10.1109/TMI.2019.2959609.
[14] H. Peng, J. Zhong, H. Liu, J. Li, M. Yao, and X. Zhang, “ResDense-focal-DeepLabV3+ enabled litchi branch semantic segmentation for robotic harvesting,” Comput. Electron. Agric., vol. 206, Mar. 2023, doi: 10.1016/j.compag.2023.107691.
[15] B. Yang et al., “FRPNet: An improved Faster-ResNet with PASPP for real-time semantic segmentation in the unstructured field scene,” Comput. Electron. Agric., vol. 217, Feb. 2024, doi: 10.1016/j.compag.2024.108623.
[16] R. Varghese and S. M., “YOLOv8: A Novel Object Detection Algorithm with Enhanced Performance and Robustness,” in 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS), IEEE, Apr. 2024, pp. 1–6, doi: 10.1109/ADICS58448.2024.10533619.
[17] E. Cervantes, J. J. Martín, and E. Saadaoui, “Updated Methods for Seed Shape Analysis,” Scientifica, vol. 2016, 2016, doi: 10.1155/2016/5691825.
DOI: https://doi.org/10.34238/tnu-jst.12049
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu