MỘT PHƯƠNG PHÁP CẢI THIỆN ĐỘ CHÍNH XÁC CỦA MÔ HÌNH HỌC SÂU PHÁT HIỆN BỆNH U NÃO TRÊN ẢNH CỘNG HƯỞNG TỪ
Thông tin bài báo
Ngày nhận bài: 03/03/25                Ngày hoàn thiện: 05/06/25                Ngày đăng: 05/06/25Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] S. Sarkar, A. Kumar, S. Chakraborty, S. Aich, J. S. Sim, and H. C. Kim, “A CNN-based approach for the detection of brain tumor using MRI scans,” Test Eng. Manag., vol. 83, pp. 16580–16586, Bhubaneswar, India, May 2020.
[2] H. S. Nogay and H. Adeli, “Multiple classification of brain MRI autism spectrum disorder by age and gender using deep learning,” J. Med. Syst., vol. 48, no. 15, 2024, doi: 10.1007/s10916-023-02032-0.
[3] J. Chaki and M. Woźniak, “A deep learning-based four-fold approach to classify brain MRI: BTSCNet,” Biomed. Signal Process. Control, vol. 85, 2023, doi: 10.1016/j.bspc.2023.104902.
[4] O. Özkaraca, O. İ. Bağrıaçık, H. Gürüler, F. Khan, J. Hussain, J. Khan, and U. Laila, “Multiple brain tumor classification with dense CNN architecture using brain MRI images,” Life, vol. 13, no. 2, 2023, doi: 10.3390/life13020349.
[5] E. Avsar and K. Salcin, “Detection and classification of brain tumors from MRI images using Faster R-CNN,” Tehnicki Glasnik, vol. 13, no. 4, pp. 337–342, Dec. 2019.
[6] S. Saeedi, S. Rezayi, H. Keshavarz, and S. R. N. Kalhori, “MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques,” BMC Med. Inform. Decis. Mak., vol. 23, no. 16, 2023, doi: 10.1186/s12911-023-02114-6.
[7] S. Das, O. F. M. R. R. Aranya, and N. N. Labiba, “Brain tumor classification using convolutional neural network,” in Proc. 1st Int. Conf. Adv. Sci. Eng. Robot. Technol. (ICASERT), Dhaka, Bangladesh, May 2019, pp.1-5.
[8] K. M. V. Hespen, J. J. M. Zwanenburg, J. W. Dankbaar, et al., “An anomaly detection approach to identify chronic brain infarcts on MRI,” Sci. Rep., vol. 11, no. 7714, 2021, doi: 10.1038/s41598-021-87013-4.
[9] H. M. Rai, K. Chatterjee, and S. Dashkevich, “Automatic and accurate abnormality detection from brain MR images using a novel hybrid UnetResNext-50 deep CNN model,” Biomed. Signal Process. Control, vol. 66, 2021, Art. no. 102477.
[10] N. Arunkumar, M. A. Mohammed, S. A. Mostafa, D. A. Ibrahim, J. J. P. C. Rodrigues, and V. H. C. Albuquerque, “Fully automatic model-based segmentation and classification approach for MRI brain tumor using artificial neural networks,” Concurr. Comput. Pract. Exp., vol. 32, no. 1, Jan. 2020, Art. no. e4962.
[11] R. Mehrotra, K. R. Namuduri, et al., “Gabor filter-based edge detection,” Pattern Recognit., vol. 25, pp. 1479–1494, 1992.
[12] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol, “Extracting and composing robust features with denoising autoencoders,” in Proc. 25th Int. Conf. Mach. Learn., 2008, pp. 307–314, doi: 10.1145/1390156.1390294.
[13] J. G. Daugman et al., “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters,” J. Opt. Soc. Am., vol. 2, no. 7, pp. 1160–1169, 1985.
[14] M. Nickparvar, “Brain Tumor MRI Dataset,” Kaggle, 2021. [Online]. Available: https://www.kaggle.com/dsv/2645886. [Accessed October 23, 2024].
[15] C. W. Cleverdon, “Factors Determining the Performance of Indexing Systems,” Aslib Cranfield Research Project, 1966.
[16] C. J. V. Rijsbergen, Information Retrieval, 2nd ed. Butterworth-Heinemann, 1979.
DOI: https://doi.org/10.34238/tnu-jst.12185
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu