CẢI TIẾN HÀM MỤC TIÊU TRONG CÁC TẤN CÔNG KHÔI PHỤC ẢNH DƯỚI ĐIỀU KIỆN NÉN GRADIENT TRONG HỌC LIÊN KẾT
Thông tin bài báo
Ngày nhận bài: 21/03/25                Ngày hoàn thiện: 05/06/25                Ngày đăng: 05/06/25Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas, "Communication-Efficient Learning of Deep Networks from Decentralized Data," in International Conference on Artificial Intelligence and Statistics, 2016, pp. 1273-1282.
[2] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, "Inverting Gradients - How easy is it to break privacy in federated learning?," Advances In Neural Information Processing Systems, vol. 33, pp. 16937-16947, 2020.
[3] B. Zhao, K. R. Mopuri, and H. Bilen, "iDLG: Improved Deep Leakage from Gradients," arXiv preprint arXiv:.02610, 2020.
[4] L. Zhu, Z. Liu, and S. Han, "Deep leakage from gradients," in Proceedings of the 33rd International Conference on Neural Information Processing Systems: Curran Associates Inc., 2019, Art. no. 1323.
[5] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, "QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding," in Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, pp. 1707-1718.
[6] A. F. Aji and K. Heafield, "Sparse Communication for Distributed Gradient Descent," ArXiv, vol. abs/1704.05021, 2017.
[7] H. Yang, M. Ge, K. Xiang, and J. Li, "Using Highly Compressed Gradients in Federated Learning for Data Reconstruction Attacks," IEEE Transactions on Information Forensics and Security, vol. 18, pp. 818-830, 2023.
[8] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, "Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training," ArXiv, vol. abs/1712.01887, 2017.
[9] W. Wei et al., "A Framework for Evaluating Gradient Leakage Attacks in Federated Learning," ArXiv, vol. abs/2004.10397, 2020.
[10] J. Jeon, K. Lee, S. Oh, and J. Ok, "Gradient inversion with generative image prior," Advances in neural information processing systems, vol. 34, pp. 29898-29908, 2021.
[11] A. Mahendran and A. Vedaldi, "Understanding Deep Image Representations by Inverting Them," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 5188-5196.
[12] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.
[13] X. Zhang, Matrix Analysis and Applications. Cambridge University Press, 2017.
[14] L. I. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Physica D: Nonlinear Phenomena, vol. 60, pp. 259-268, 1992.
[15] X. Zhang, M. Burger, and S. Osher, "A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration," Journal of Scientific Computing, vol. 46, pp. 20-46, 2010.
[16] S. P. Boyd and L. Vandenberghe, "Convex Optimization," IEEE Transactions on Automatic Control, vol. 51, pp. 1859-1859, 2010.
font-family:"Times New Roman",serif;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
minor-latin;mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
EN-US;mso-bidi-language:AR-SA'>
font-family:"Times New Roman",serif;mso-fareast-font-family:Calibri;mso-fareast-theme-font:
minor-latin;mso-bidi-theme-font:minor-bidi;mso-ansi-language:EN-US;mso-fareast-language:
EN-US;mso-bidi-language:AR-SA'>
DOI: https://doi.org/10.34238/tnu-jst.12360
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu