XÓA XƯƠNG HIỆU QUẢ TRONG ẢNH X-QUANG NGỰC VỚI HÀM MẤT MÁT ĐƠN GIẢN HÓA
Thông tin bài báo
Ngày nhận bài: 19/04/25                Ngày hoàn thiện: 30/06/25                Ngày đăng: 30/06/25Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] P. Vock and Z. Szucs-Farkas, “Dual energy subtraction: Principles and clinical applications,” Eur. J. Radiol., vol. 72, no. 2, pp. 231–237, 2009.
[2] M. Gusarev, R. Kuleev, A. Khan, A. R. Rivera, and A. M. Khattak, “Deep learning models for bone suppression in chest radiographs,” Proc. IEEE Conf. Comput. Intell. Bioinf. Comput. Biol. (CIBCB), 2017, pp. 1–7.
[3] A. Zarshenas, J. Liu, P. Forti, and K. Suzuki, “Separation of bones from soft tissue in chest radiographs: Anatomy-specific orientation-frequency-specific deep neural network convolution,” Med. Phys., vol. 46, no. 5, pp. 2232–2242, 2019.
[4] Y. Chen et al., “Bone suppression of chest radiographs with cascaded convolutional networks in wavelet domain,” IEEE access, vol. 7, pp. 8346–8357, 2019.
[5] M.-C. Huynh, T.-H. Nguyen, and M.-T. Tran, “Context learning for bone shadow exclusion in CheXNet accuracy improvement,” in Proc. 10th Int. Conf. Knowl. Syst. Eng. (KSE), 2018, pp. 135–140.
[6] P. Rajpurkar et al., “CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning,” arXiv preprint, arXiv:1711.05225, 2017.
[7] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” arXiv preprint, arXiv:1611.07004, 2016.
[8] G. Rani, A. Misra, V. S. Dhaka, E. Zumpano, and E. Vocaturo, “Spatial feature and resolution maximization GAN for bone suppression in chest radiographs,” Comput. Methods Programs Biomed., vol. 224, 2022, Art. no. 107024.
[9] Z. Zhou, L. Zhou, and K. Shen, “Dilated conditional GAN for bone suppression in chest radiographs with enforced semantic features,” Med. Phys., vol. 47, no. 12, pp. 6207–6215, 2020.
[10] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” Proc. Med. Image Comput. Comput.-Assist. Intervent. (MICCAI), 2015, pp. 234–241.
[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 770–778.
[12] S. Arvind, J. V. Tembhurne, T. Diwan, and P. Sahare, “Evaluation of deep learning methods for bone suppression from dual energy chest radiography,” Artificial Neural Networks and Machine Learning – ICANN 2020, 2020, pp. 247–257.
[13] T.-Y. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie, “Feature pyramid networks for object detection,” arXiv preprint, arXiv:1612.03144, 2016.
[14] S. Kalisz and M. Marczyk, “Autoencoder-based bone removal algorithm from x-ray images of the lung,” Proc. IEEE 21st Int. Conf. Bioinf. Bioeng. (BIBE), 2021, pp. 1–6.
[15] S. Rajaraman, G. Zamzmi, L. Folio, P. Alderson, and S. Antani, “Chest x-ray bone suppression for improving classification of tuberculosis-consistent findings,” Diagnostics, vol. 11, no. 5, 2021, Art. no. 840.
[16] S. Arvind, J. V. Tembhurne, T. Diwan, and P. Sahare, “Improvised light weight deep CNN based U-Net for the semantic segmentation of lungs from chest X-rays,” Results Eng., vol. 17, 2023, Art. no. 100929.
[17] O. Oktay et al., “Attention U-Net: Learning where to look for the pancreas,” arXiv preprint, arXiv:1804.03999, 2018.
[18] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 1125–1134.
[19] H. M. Chuong, “X-ray bone shadow suppression,” Kaggle, 2022. [Online]. Available: https://www.kaggle.com/datasets/hmchuong/xray-bone-shadow-supression. [Accessed March 30, 2025].
DOI: https://doi.org/10.34238/tnu-jst.12628
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu