NÂNG CAO HIỆU SUẤT PHÂN LOẠI ĐIỆN TÂM ĐỒ DỰA TRÊN HỌC CHUYỂN GIAO VÀ MẠNG DENSENET-BILSTM NHẸ
Thông tin bài báo
Ngày nhận bài: 19/05/25                Ngày hoàn thiện: 29/06/25                Ngày đăng: 30/06/25Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] T. Anbalagan, M. K. Nath, D. Vijayalakshmi, and A. Anbalagan, “Analysis of various techniques for ECG signal in healthcare, past, present, and future,” Biomedical Engineering Advances, vol. 6, 2023, Art. no. 100089.
[2] S. Majid and A.-M. Fardin, “A novel method for reducing arrhythmia classification from 12-lead ECG signals to single-lead ECG with minimal loss of accuracy through teacher-student knowledge distillation,” Information Sciences, vol. 593, pp. 64-77, 2022.
[3] A. K. Sangaiah, M. Arumugam, and G. B. Bian, “An intelligent learning approach for improving ECG signal classification and arrhythmia analysis,” Artificial Intelligence in Medicine, vol. 103, 2020, Art. no. 101788.
[4] Y. Lu, M. Jiang, L. Wei, J. Zhang, Z. Wang, B. Wei, and L. Xia, “Automated arrhythmia classification using depthwise separable convolutional neural network with focal loss,” Biomedical Signal Processing and Control, vol. 69, 2021, Art. no. 102843.
[5] L. Qin, Y. Xie, X. Liu, X. Yuan, and H. Wang, “An end-to-end 12-leading electrocardiogram diagnosis system based on deformable convolutional neural network with good antinoise ability,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-13, 2021.
[6] R. Wang, J. Fan, and Y. Li, “Deep multi-scale fusion neural network for multi-class arrhythmia detection,” IEEE Journal of Biomedical and Health Informatics, vol. 24, pp. 2461-2472, 2020.
[7] J. K. Kim, S. Jung, J. Park, and S. W. Han, “Arrhythmia detection model using modified DenseNet for comprehensible Grad-CAM visualization,” Biomedical Signal Processing and Control, vol. 173, 2022, Art. no. 103408.
[8] T. H. Bui, M. T. Pham, et al., “Automatic varied-length ECG classification using a lightweight DenseNet model,” Biomedical Signal Processing and Control, vol. 82, 2023, Art. no. 104529.
[9] K. Feng and Z. Fan, “A novel bidirectional LSTM network based on scale factor for atrial fibrillation signals classification,” Biomedical Signal Processing and Control, vol. 76, 2022, Art. no. 103663.
[10] G. Petmezas, K. Haris, Stefanopoulos, et al., “Automated atrial fibrillation detection using a hybrid CNN-LSTM network on imbalanced ECG datasets,” Biomedical Signal Processing and Control, vol. 63, 2021, Art. no. 102194.
[11] K. Weimann and T. O. Conrad, “Transfer learning for ECG classification,” Scientific Reports, vol. 11, pp. 1-12, 2021.
[12] N. Strodthoff, P. Wagner, T. Schaeffter, and W. Samek, “Deep learning for ECG analysis: Benchmarks and insights from PTB-XL,” IEEE Journal of Biomedical and Health Informatics, vol. 25, pp. 1519-1528, 2020.
[13] S. Tan, G. Androz, A. Chamseddine, P. Fecteau, A. Courville, Y. Bengio, and J. P. Cohen, “Icentia11k: An unsupervised representation learning dataset for arrhythmia subtype discovery,” arXiv preprint arXiv:1910.09570, 2019.
[14] T. Chen, R. Xu, Y. He, and X. Wang, “Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN,” Expert Systems with Applications, vol. 72, pp. 221-230, 2017.
[15] F. Liu, C. Liu, et al., “An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection,” Journal of Medical Imaging and Health Informatics, vol. 8, pp. 1368-1373, 2018.
[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, pp. 1735-1780, 1997.
[17] L. N. Smith, “Cyclical learning rates for training neural networks,” in 2017 IEEE winter conference on applications of computer vision (WACV), 2017, pp. 464-472.
[18] J. Li, S. P. Pang, F. Xu, P. Ji, S. Zhou, and M. Shu, “Two-dimensional ECG-based cardiac arrhythmia classification using DSE-ResNet,” Scientific Reports, vol. 2022, 12, Art. no. 14485.
[19] J. Zhang, D. Liang, A. Liu, M. Gao, X. Chen, X. Zhang, and X. Chen, “MLBF-Net: a multi-lead-branch fusion network for multi-class arrhythmia classification using 12-Lead ECG,” IEEE Journal of Translational Engineering in Health and Medicine, vol. 9, pp. 1-11, 2021.
[20] D. Zhang, S. Yang, X. Yuan, and P. Zhang, “Interpretable deep learning for automatic diagnosis of 12-lead electrocardiogram,” Iscience, vol. 24, 2021, Art. no. 102373.
[21] H. Zhang, C. Liu, Z. Zhang, et al., “Recurrence Plot-Based Approach for Cardiac Arrhythmia Classification Using Inception-ResNet-v2,” Frontiers in Physiology, vol. 12, pp. 648950, 2021.
[22] D. U. Jeong and K. M. Lim, “Convolutional neural network for classification of eight types of arrhythmia using 2D time--frequency feature map from standard 12-lead electrocardiogram,” Scientific Reports, vol. 11, 2021, Art. no. 20396.
[23] Z. Li and H. Zhang, “Automatic Detection for Multi-Labeled Cardiac Arrhythmia Based on Frame Blocking Preprocessing and Residual Networks,” Frontiers in Cardiovascular Medicine, vol. 8, 2021, Art. no. 616585.
DOI: https://doi.org/10.34238/tnu-jst.12831
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu