MỘT PHƯƠNG PHÁP CẢI THIỆN ĐỘ CHÍNH XÁC CỦA MÔ HÌNH HỌC SÂU TRONG VIỆC PHÂN LOẠI CÁC BỆNH LÝ TIM MẠCH DỰA TRÊN TÍN HIỆU ĐIỆN TÂM ĐỒ
Thông tin bài báo
Ngày nhận bài: 29/05/25                Ngày hoàn thiện: 30/06/25                Ngày đăng: 30/06/25Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] G. Sivapalan, K. K. Nundy, S. Dev, B. Cardiff, and D. John, “ANNet: A lightweight neural network for ECG anomaly detection in IoT edge sensors,” IEEE Trans. Biomed. Circuits Syst., vol. 16, no. 1, pp. 24–35, Jan. 2022, doi: 10.1109/TBCAS.2021.3137646.
[2] J. Qin, F. Gao, Z. Wang, D. C. Wong, Z. Zhao, S. D. Relton, and H. Fang, “A novel temporal generative adversarial network for electrocardiography anomaly detection,” Artif. Intell. Med., vol. 136, Jan. 2023, Art. no. 102489, doi: 10.1016/j.artmed.2023.102489.
[3] L. Mohebbanaaz, V. R. Kumar, and Y. P. Sai, “A new transfer learning approach to detect cardiac arrhythmia from ECG,” Signal Image Video Process., vol. 16, no. 7, pp. 1945–1953, Jul. 2022, doi: 10.1007/s11760-022-02155-w.
[4] A. Alamr and A. Artoli, “Unsupervised transformer-based anomaly detection in ECG signals,” Algorithms, vol. 16, no. 3, Mar. 2023, Art. no. 152, doi: 10.3390/a16030152.
[5] X. Zhang, Z. Huo, and Q. Wu, “An ensemble of deep learning-based multi-model for ECG heartbeats arrhythmia classification,” IEEE Access, vol. 9, pp. 101746–101759, Jul. 2021, doi: 10.1109/ACCESS.2021.3096610.
[6] H. Khan, N. Javaid, T. Bashir, M. Akbar, N. Alrajeh, and S. Aslam, “Heart disease prediction using novel ensemble and blending based cardiovascular disease detection networks: EnsCVDD-Net and BlCVDD-Net,” IEEE Access, vol. 12, pp. 109230–109254, Jul. 2024, doi: 10.1109/ACCESS.2024.3421241.
[7] J. Chen, S. Huang, Y. Zhang, et al., “Congenital heart disease detection by pediatric electrocardiogram based deep learning integrated with human concepts,” Nat. Commun., vol. 15, Jan. 2024, doi: 10.1038/s41467-024-44930-y.
[8] H. Li and P. Boulanger, “Structural anomalies detection from electrocardiogram (ECG) with spectrogram and handcrafted features,” Sensors, vol. 22, no. 7, Mar. 2022, Art. no. 2467, doi: 10.3390/s22072467.
[9] U. R. Acharya, H. Fujita, O. S. Lih, Y. Hagiwara, J. H. Tan, and M. Adam, “Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network,” Inf. Sci., vol. 405, pp. 81–90, Sep. 2017, doi: 10.1016/j.ins.2017.04.012.
[10] P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, C. Bourn, and A. Y. Ng, “Cardiologist-level arrhythmia detection with convolutional neural networks,” arXiv preprint, arXiv:1707.01836, Jul. 2017.
[11] O. Yildirim, U. B. Baloglu, R. S. Tan, and U. R. Acharya, “A deep convolutional neural network model for automated identification of abnormal heart rhythms using ECG signals,” Appl. Soft Comput., vol. 84, Oct. 2019, Art. no. 105619, doi: 10.1016/j.asoc.2019.105619.
[12] B. Tutuko, A. Darmawahyuni, S. Nurmaini, A. E. Tondas, M. N. Rachmatullah, et al., “DAE-ConvBiLSTM: End-to-end learning single-lead electrocardiogram signal for heart abnormalities detection,” PLoS ONE, vol. 17, no. 12, Dec. 2022, Art. no. e0277932, doi: 10.1371/journal.pone.0277932.
[13] T. M. Ingolfsson, H. A. A. Madsen, A. Laursen, and P. Popovski, “ECG-TCN: Wearable Cardiac Arrhythmia Detection with a Temporal Convolutional Network,” IEEE Transactions on Biomedical Circuits and Systems, vol. 17, no. 2, pp. 225–238, Apr. 2023, doi: 10.1109/TBCAS.2023.3240431.
[14] R. Cheng, S. Li, Z. Zhang, J. Chen, and X. Hu, “MSW-Transformer: Multi-Scale Shifted Windows Transformer Networks for 12-Lead ECG Classification,” arXiv preprint arXiv:2311.13583, 2023. [Online]. Available: https://arxiv.org/abs/2311.13583. [Accessed Feb. 15, 2025].
[15] D. Li, J. Zhang, Q. Zhang, and X. Wei, “Classification of ECG signals based on 1D convolution neural network,” in Proc. 2017 IEEE 19th Int. Conf. e-Health Netw., Appl. Serv. (Healthcom), Dalian, China, Oct. 2017, pp. 1–6, doi: 10.1109/HealthCom.2017.8210842.
[16] T. D. Pham, “Time–frequency time–space LSTM for robust classification of physiological signals,” Sci. Rep., vol. 11, Mar. 2021, doi: 10.1038/s41598-021-86390-1.
[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Adv. Neural Inf. Process. Syst., vol. 30, pp. 5998–6008, Dec. 2017.
[18] T. Kwon, H. Lee, J. Kim, and B. Lee, “Transformer-based stacked multi-head attention model for EEG signal denoising,” Brain Informatics, vol. 10, no. 1, pp. 1–13, 2023.
[19] S. Roy, A. Kiral-Kornek, and D. M. Harrer, “Deep learning enabling technology for epileptic seizure detection using EEG,” in Proc. IEEE EMBC, 2019, pp. 1–4.
[20] Z. Zhao, Q. Zhang, H. Liu, L. Peng, and Y. Li, “Epileptic Seizure Detection Based on Multi-Head Attention Mechanism and CNN-LSTM Network,” IEEE Access, vol. 10, pp. 19424–19435, 2022.
[21] J. Zheng, J. Zhang, S. Danioko, et al., “A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients,” Sci. Data, vol. 7, Feb. 2020, doi: 10.1038/s41597-020-0386-x.
[22] C. W. Cleverdon, “Factors Determining the Performance of Indexing Systems,” Aslib Cranfield Research Project, 1966.
[23] C. J. V. Rijsbergen, Information Retrieval, 2nd ed. Butterworth-Heinemann, 1979.
DOI: https://doi.org/10.34238/tnu-jst.12910
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu