NGHIÊN CỨU TỔNG QUAN VỀ TẠO ỨNG DỤNG DI ĐỘNG BẰNG TRÍ TUỆ NHÂN TẠO
Thông tin bài báo
Ngày nhận bài: 31/05/25                Ngày hoàn thiện: 30/06/25                Ngày đăng: 30/06/25Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] D. Chen, X. Zhang, J. Lee, et al., “LLM for mobile: An initial roadmap,” ACM Trans. Softw. Eng. Methodol., vol. 34, no. 5, pp. 1–29, May 2025, doi: 10.1145/3708528.
[2] J. Wei, A.-L. Courbis, T. Lambolais, G. Dray, and W. Maalej, “On AI-inspired UI design,” IEEE Softw., vol. 42, no. 3, pp. 50–58, 2025, doi: 10.1109/MS.2025.3536838.
[3] D. Dao, J. Y. C. Teo, W. Wang, and H. D. Nguyen, “LLM-Powered Multimodal AI Conversations for Diabetes Prevention,” in Proc. 1st ACM Workshop AI-Powered Q&A Syst. Multimedia (AIQAM ’24), Phuket, Thailand, 10 Jun. 2024, pp. 1–6, doi: 10.1145/3643479.3662049.
[4] M. Hasan, K. S. Mehrab, W. U. Ahmad, and R. Shahriyar, “Text2App: A framework for creating Android apps from text descriptions,” arXiv preprint arXiv:2104.08301 [cs.SE], Apr. 16, 2021.
[5] S. Böhm and S. Graser, “AI-based mobile app prototyping: Status quo, perspectives, and preliminary insights from experimental case studies,” in Proc. 16th Int. Conf. Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services (CENTRIC 2023), Valencia, Spain, Nov. 13–17, 2023, pp. 29–37.
[6] L. Alwakeel, K. Lano, and H. Alfraihi, “Towards integrating machine learning models into mobile apps using AppCraft,” in Proc. Agile Model-driven Engineering Workshop (Agile MDE) at the Software Technologies: Applications and Foundations (STAF) Federated Conferences, Leicester, U.K., Jul. 20, 2023, CEUR Workshop Proc., vol. 3620, pp. 7–10.
[7] Y. Li, X. Dang, H. Tian, et al., “An empirical study of AI techniques in mobile applications,” J. Syst. Softw., vol. 219, Art. no. 112233, Jan. 2025, doi: 10.1016/j.jss.2024.112233.
[8] A. Namoun, A. Alrehaili, Z. U. Nisa, H. Almoamari, and A. Tufail, “Predicting the usability of mobile applications using AI tools: The rise of large user-interface models, opportunities, and challenges,” Procedia Comput. Sci., vol. 238, pp. 671–682, 2024, doi:10.1016/j.procs.2024.06.076.
[9] M. H. Miraz, M. Ali, and P. S. Excell, “Cross-cultural usability evaluation of AI-based adaptive user interface for mobile applications,” Acta Sci. Technol., vol. 44, no. 1, Art. no. e61112, Jul. 2022, doi: 10.4025/actascitechnol.v44i1.61112.
[10] J. Wei, A.-L. Courbis, T. Lambolais, B. Xu, P.-L. Bernard, and G. Dray, “Boosting GUI prototyping with diffusion models,” in Proc. 2023 IEEE 31st Int. Requirements Engineering Conf. (RE), Hannover, Germany, Sept. 4–8, 2023, pp. 275–280, doi: 10.1109/RE57278.2023.00035.
[11] J. Senanayake, H. Kalutarage, M. O. Al-Kadri, A. Petrovski, and L. Piras, “Android code vulnerabilities early detection using AI-powered ACVED plugin,” in Proc. 37th Annu. IFIP WG 11.3 Conf. Data and Applications Security and Privacy (DBSec 2023), Sophia Antipolis, France, Jul. 19–21, 2023, pp. 339–357, doi: 10.1007/978-3-031-37586-6_20.
[12] L. Alwakeel, K. Lano, and H. Alfraihi, “AppCraft: Model-driven development framework for mobile applications,” IEEE Access, vol. 13, pp. 23658–23699, Feb. 2025, doi: 10.1109/ACCESS.2025.3536321.
[13] Y. Gui, Y. Wan, Z. Li, Z. Zhang, D. Chen, H. Zhang, et al., “UICoPilot: Automating UI synthesis via hierarchical code generation from webpage designs,” in Proc. ACM Web Conf. 2025 (WWW ’25), Sydney, NSW, Australia, 28 Apr.–2 May 2025, pp. 1–10, doi: 10.1145/3696410.3714891.
[14] I. H. Sarker, M. M. Hoque, M. K. Uddin, and T. Alsanoosy, “Mobile data science and intelligent apps: Concepts, AI-based modeling and research directions,” Mobile Netw. Appl., vol. 26, no. 1, pp. 285–303, Jan. 2021, doi: 10.1007/s11036-020-01650-z.
[15] M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, et al., “The PRISMA 2020 statement: An updated guideline for reporting systematic reviews,” BMJ, vol. 372, Art. no. n71, Mar. 2021, doi: 10.1136/bmj.n71.
[16] M. Xing, R. Zhang, H. Xue, Q. Chen, F. Yang, and Z. Xiao, “Understanding the weakness of large language model agents within a complex Android environment,” in Proc. 30th ACM SIGKDD Conf. Knowl. Discov. Data Min. (KDD ’24), Barcelona, Spain, Aug. 25–29, 2024, pp. 6061–6072, doi: 10.1145/3637528.3671650.
[17] J. Senanayake, H. Kalutarage, L. Piras, M. O. Al-Kadri, and A. Petrovski, “Assuring privacy of AI-powered community-driven Android code vulnerability detection,” in Proc. ESORICS Int. Workshops 2024, Lecture Notes in Computer Science, vol. 15264, Springer, Bydgoszcz, Poland, Sept. 16–20, 2024, pp. 457–476, doi: 10.1007/978-3-031-82362-6_27.
[18] S. Petridis, M. X. Liu, A. J. Fiannaca, V. Tsai, M. Terry, and C. J. Cai, “In situ AI prototyping: Infusing multimodal prompts into mobile settings with MobileMaker,” in Proc. 2024 IEEE Symp. Visual Languages and Human-Centric Comput. (VL/HCC), Liverpool, U.K., Sept. 2–6, 2024, pp. 121–133, doi: 10.1109/VL/HCC60511.2024.00023.
[19] F. Huang, G. Li, X. Zhou, J. F. Canny, and Y. Li, “Creating user interface mock-ups from high-level text descriptions with deep-learning models,” arXiv preprint arXiv:2110.07775 [cs.HC], Oct. 14, 2021.
[20] S. Feng, S. Ma, H. Wang, D. Kong, and C. Chen, “MUD: Towards a large-scale and noise-filtered UI dataset for modern style UI modeling,” in Proc. 2024 CHI Conf. Human Factors Comput. Syst. (CHI ’24), Honolulu, HI, USA, May 11–16, 2024, doi: 10.1145/3613904.3642350.
[21] S. N. Ardini, S. Sunarya, and K. Latifah, “Development of mobile application through the concept of artificial intelligence to enhance pronunciation skill in EFL,” KnE Social Sciences, vol. 9, no. 6, pp. 56–66, Mar. 2024, doi: 10.18502/kss.v9i6.15254 .
[22] K. Kolthoff, J. Gerling, F. Trautsch, et al., “Interlinking user stories and GUI prototyping: A semi-automatic LLM-based approach,” in Proc. 32nd IEEE Int. Requirements Engineering Conf. (RE 2024), IEEE, 2024, pp. 1–11, doi: 10.1109/RE.2024.1234567.
[23] Y. Jiang, S. Zhao, N. Werden, and W. Oney, “Computational approaches for understanding, generating, and adapting user interfaces,” in Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems (CHI EA ’22), ACM, 2022, pp. 1–8, doi: 10.1145/3491101.3519735.
DOI: https://doi.org/10.34238/tnu-jst.12946
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu