ẢNH HƯỞNG CỦA CÁC ION Br– VÀ Cl– ĐẾN HÌNH THÁI VÀ TÍNH CHẤT CỦA DÂY NANO BẠC
Thông tin bài báo
Ngày nhận bài: 02/06/25                Ngày hoàn thiện: 24/10/25                Ngày đăng: 27/10/25Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] P. Gayathri et al., “Enhancing photovoltaic applications through precipitating agents in ITO/CIS/CeO2/Al heterojunction solar cell,” Inorganic Chemistry Communications, vol. 168, 2024, Art. no. 112866.
[2] G. R. Pisharody et al., “A generic approach for aligning liquid crystals using solution-processed 2D materials on ITO-free surfaces,” Journal of Materials Chemistry C, vol. 12, no. 28, pp. 10707–10717, 2024.
[3] Y. Pu et al., “ITO AlGaN/GaN Ultraviolet broadband photodetector with exceeding responsivity beyond the ITO transmittance limitation, ” in IEEE Electron Device Letters, vol. 45, no. 3, pp. 472-475, 2024.
[4] Y. Li et al., “A review on transparent electrodes for flexible organic solar cells,” Coating, vol. 14, no. 8, 2024, Art. no. 1031.
[5] P. Wang et al., “Highly stable graphene-based flexible hybrid transparent conductive electrodes for organic solar cells,” Adv. Mater. Interfaces, vol. 9, no. 3, 2022, Art. no. 2101442.
[6] Y. Xia et al., “Beyond flexibility: transparent silver nanowire electrodes on patterned surfaces for reconfigurable devices,” Advanced Engineering Materials, vol. 26, no. 1, 2024, Art. no. 2301165.
[7] W. You et al., “Research progress on the stability of transparent conductive films for silver nanowires,” Microelectronics Reliability, vol. 156, 2024, Art. no. 115394.
[8] A. Madeira et al., “Rapid synthesis of ultra-long silver nanowires for high performance transparent electrodes,” Nanoscale Adv., vol. 2, no. 9, pp. 3804–3808, 2020.
[9] H. Mao et al., “Halide-salt-free synthesis of silver nanowires with high yield and purity for transparent conductive films,” ACS Omega, vol. 8, no. 8, pp. 7607–7614, 2023.
[10] Z. Fan et al., “Synthesis and the growth mechanism of ultrafine silver nanowires by using 5-chloro-2-thienylmagnesium bromide as the additive,” RSC Adv., vol. 11, no. 59, pp. 37063–37066, 2021.
[11] Y. Li et al., “Morphology-controlled silver nanowire synthesis using a cocamidopropyl betaine-based polyol process for flexible and stretchable electronics,” RSC Adv., vol. 10, no. 36, pp. 21369–21374, 2020.
[12] M. Gholami et al., “Chemically-stable flexible transparent electrode: gold-electrodeposited on embedded silver nanowires,” Sci. Rep., vol. 13, no. 11, 2023, Art. no. 1751.
[13] D. Bellet et al., “Transparent electrodes based on silver nanowire networks: From physical considerations towards device integration,” Materials (Basel)., vol. 10, no. 6, 2017, Art. no. 570.
[14] Y. Rui et al., “Understanding the effects of NaCl, NaBr and their mixtures on silver nanowire nucleation and growth in terms of the distribution of electron traps in silver halide crystals,” Nanomaterials, vol. 8, no. 3, 2018, Art. no. 161.
[15] A. A. Salam et al., “Preparation of silver nanowires with controlled parameters for conductive transparent electrodes,” Sci. Rep., vol. 14, no. 1, 2024, Art. no. 20986.
[16] A. A. M. Alqanoo et al., “Synthesis and Deposition of Silver Nanowires on Porous Silicon as an Ultraviolet Light Photodetector,” Nanomaterials, vol. 13, no. 2, 2023, Art. no. 353.
[17] L. Cao et al., “Rapid and facile synthesis of high-performance silver nanowires by a halide-mediated, modified polyol method for transparent conductive films,” Nanomaterials, vol. 10, no. 6, 2020, Art. no. 1139.
[18] R. R. Da Silva et al., “Facile Synthesis of Sub-20 nm Silver Nanowires through a Bromide-Mediated Polyol Method,” ACS Nano, vol. 10, no. 8, pp. 7892–7900, 2016.
[19] P. Zhang et al., “Behind the role of bromide ions in the synthesis of ultrathin silver nanowires,” Mater. Lett., vol. 213, pp. 23–26, 2018.
DOI: https://doi.org/10.34238/tnu-jst.12964
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





