NGHIÊN CỨU TẠO HỆ COMPOSITE TỪ POLYMER SINH HỌC KẾT HỢP TANNIC ACID ỨNG DỤNG TRONG CẦM MÁU
Thông tin bài báo
Ngày nhận bài: 20/10/25                Ngày hoàn thiện: 30/11/25                Ngày đăng: 30/11/25Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] G. D. Boon, "An overview of hemostasis," Toxicologic Pathology, vol. 21, no. 2, pp. 170-179, 1993.
[2] H. Pandith, X. Zhang, J. Liggett, K. W. Min, et al., "Hemostatic and wound healing properties of Chromolaena odorata leaf extract," International Scholarly Research Notices, vol. 2013, 2013, Art. no. 168269.
[3] P. K. Sasmal and S. Ganguly, "Polymer in hemostasis and follow‐up wound healing," Journal of Applied Polymer Science, vol. 140, no. 9, 2023, Art. no. e53559.
[4] A. Facciorusso, M. Bertini, M. Bertoni, N. Tartaglia, et al., "Efficacy of hemostatic powders in lower gastrointestinal bleeding: Clinical series and literature review," Digestive and Liver Disease, vol. 53, no. 10, pp. 1327-1333, 2021.
[5] B. Aaliya, K. V. Sunooj, and M. Lackner, "Biopolymer composites: a review," International Journal of Biobased Plastics, vol. 3, no. 1, pp. 40-84, 2021.
[6] X. Xie, D. Li, Y. Chen, Y. Shen, et al., "Conjugate electrospun 3D gelatin nanofiber sponge for rapid hemostasis," Advanced Healthcare Materials, vol. 10, no. 20, 2021, Art. no. 2100918.
[7] E. Dorkhani, A. Faryabi, Y. Noorafkan, A. Heirani, et al., "Biomedical properties and hemostatic efficacy of polyvinyl alcohol (PVA) based hydrogel in experimental rat liver injury model," Journal of Applied Biomaterials & Functional Materials, vol. 21, 2023, doi: 10.1177/228080002311988.
[8] P. Fan, Y. Zeng, D. Zaldivar-Silva, L. Agüero, et al., "Chitosan-based hemostatic hydrogels: The concept, mechanism, application, and prospects," Molecules, vol. 28, no. 3, 2023, Art. no. 1473.
[9] X. Zhou, Q. Zhou, Q. Chen, Y. Ma, et al., "Carboxymethyl chitosan/tannic acid hydrogel with antibacterial, hemostasis, and antioxidant properties promoting skin wound repair," ACS Biomaterials Science & Engineering, vol. 9, no. 1, pp. 437-448, 2022.
[10] L. Fan, H. Yang, J. Yang, M. Peng, et al., "Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings," Carbohydrate Polymers, vol. 146, pp. 427-434, 2016.
[11] W. Huang, S. Cheng, X. Wang, Y. Zhang, et al., "Noncompressible hemostasis and bone regeneration induced by an absorbable bioadhesive self‐healing hydrogel," Advanced Functional Materials, vol. 31, no. 22, 2021, Art. no. 2009189.
[12] I. P. Sæbø, M. Bjørås, H. Franzyk, E. Helgesen, et al., "Optimization of the hemolysis assay for the assessment of cytotoxicity," International Journal of Molecular Sciences, vol. 24, no. 3, 2023, Art. no. 2914.
[13] M. Rinaudo, "Chitin and chitosan: Properties and applications," Progress in Polymer Science, vol. 31, no. 7, pp. 603-632, 2006.
[14] H. Fan, J. Wang, and Z. Jin, "Tough, swelling-resistant, self-healing, and adhesive dual-cross-linked hydrogels based on polymer–tannic acid multiple hydrogen bonds," Macromolecules, vol. 51, no. 5, pp. 1696-1705, 2018.
[15] S. J. Kim, S. J. Park, and S. I. Kim, "Swelling behavior of interpenetrating polymer network hydrogels composed of poly (vinyl alcohol) and chitosan," Reactive and Functional Polymers, vol. 55, no. 1, pp. 53-59, 2003.
[16] Y. Fang, L. Wang, X. Zheng, P. Ni, et al., "Blood-triggered self-sealing and tissue adhesive hemostatic nanofabric," Nature Communications, vol. 16, no. 1, 2025, Art. no. 4910.
[17] Z. Tan, X. Li, C. Yu, M. Yao, et al., "A self-gelling powder based on polyacrylic acid/polyacrylamide/quaternate chitosan for rapid hemostasis," International Journal of Biological Macromolecules, vol. 232, 2023, Art. no. 123449.
[18] A. Liu, S. Cui, L. Song, X. Guo, et al., "Ultrafast self-gelling, superabsorbent, and adhesive chitosan-based hemostatic powders for rapid hemostasis and wound healing," Carbohydrate Polymers, vol. 355, 2025, Art. no. 123362.
[19] W. Zhang, X. Geng, S. Qin, Z. Xie, et al., "Research progress and application of chitosan dressings in hemostasis: A review," International Journal of Biological Macromolecules, vol. 282, 2024, Art. no. 136421.
[20] D. Gheorghiță, H. Moldovan, A. Robu, A. I. Bița, et al., "Chitosan-based biomaterials for hemostatic applications: a review of recent advances," International Journal of Molecular Sciences, vol. 24, no. 13, 2023, Art. no. 10540.
[21] C. D. Hoemann, C. Marchand, G. E. Rivard, H. El-Gabalawy, et al., "Effect of chitosan and coagulation factors on the wound repair phenotype of bioengineered blood clots," International Journal of Biological Macromolecules, vol. 104, pp. 1916-1924, 2017.
[22] N. Li, X. Yang, W. Liu, G. Xi, et al., "Tannic acid cross‐linked polysaccharide‐based multifunctional hemostatic microparticles for the regulation of rapid wound healing," Macromolecular Bioscience, vol. 18, no. 11, 2018, Art. no. 1800209.
[23] W. Feng and Z. Wang, "Tailoring the swelling‐shrinkable behavior of hydrogels for biomedical applications," Advanced Science, vol. 10, no. 28, 2023, Art. no. 2303326.
[24] ASTM International, ASTM F756-17, Standard Practice for Assessment of Hemolytic Properties of Materials, West Conshohocken, PA, 2017.DOI: https://doi.org/10.34238/tnu-jst.13799
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





