ĐIỀU KHIỂN MỜ THÍCH NGHI HỆ CÁNH TAY ROBOT | Ngôn | TNU Journal of Science and Technology

ĐIỀU KHIỂN MỜ THÍCH NGHI HỆ CÁNH TAY ROBOT

Thông tin bài báo

Ngày nhận bài: 07/08/21                Ngày hoàn thiện: 29/11/21                Ngày đăng: 30/11/21

Các tác giả

1. Nguyễn Chí Ngôn Email to author, Trường Đại học Cần Thơ
2. Cao Thị Yến, Trường Cao đẳng nghề An Giang
3. Trương Thị Thanh Tuyền, Trường Đại học Cần Thơ

Tóm tắt


Do đặc điểm phi tuyến, hệ động lực học robot luôn là chủ đề thu hút nhiều nghiên cứu. Các giải thuật điều khiển robot từ cổ điển đến hiện đại và thông minh, đã được triển khai. Tuy nhiên, để tiếp cận một kỹ thuật điều khiển robot cụ thể, người đọc gặp phải rất nhiều tài liệu mang nặng tính học thuật. Bài báo này nhằm mục tiêu tổng hợp tài liệu, trình bày chi tiết quá trình trình xây dựng mô hình và mô phỏng kiểm nghiệm giải thuật điều khiển trượt mờ thích nghi cho hệ robot, đồng thời minh họa trên mô hình tay máy 2 bậc tự do, trong môi trường MATLAB/Simulink. Thành phần khó kiểm soát trong mô hình đối tượng, cũng như trong luật trượt kinh điển là ma sát, nhiễu và các yếu tố bất định khác, được xấp xỉ bằng các hệ mờ. Với cơ chế thích nghi được áp dụng, luật điều khiển trượt đủ linh hoạt để thích ứng với sự biến đổi tham số của robot và ổn định theo lý thuyết Lyapunov. Mô phỏng trên mô hình tay máy 2 bậc tự do cho thấy bộ điều khiển trượt mờ thích nghi cho đáp ứng không xuất hiện vọt lố, thời gian xác lập nhỏ (0,15 giây) và sai số xác lập không đáng kể (0,0012 rad). Trường hợp tăng tải trọng của tay máy lên 100% cũng cho thấy quỹ đạo đáp ứng bám tốt quỹ đạo tham khảo và không xuất hiện dao động đáng kể trong tín hiệu điều khiển.

Từ khóa


Robot 2 bậc tự do; Điều khiển mờ thích nghi; Xấp xỉ mờ; Hệ mờ; Điều khiển trượt

Toàn văn:

PDF

Tài liệu tham khảo


[1] H. Lee, D. Nam, and C. H. Park, “A sliding mode controller using neural networks for robot manipulator,” Proc. of European Symposium on Artificial Neural Networks Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 193-198.

[2] E. Tunstel, M. Akbarzadeh-T, K. Kumbla, and M. Jamshidi, "Soft computing paradigms for learning fuzzy controllers with applications to robotics," Proc. of North American Fuzzy Information Processing, 1996, pp. 355-359, doi: 10.1109/NAFIPS.1996.534759.

[3] Y.-F. Peng, C.-H. Chiu, W.-R. Tsai, and M.-H. Chou, “Design of an omni-directional spherical robot: using fuzzy control,” Proc. of the Inter. Multiconference of Engineers and Computer Scientists - IMECS 2009, vol. 1, March 18 - 20, 2009, Hong Kong.

[4] F.-Y. Hsu and L.-C. Fu, "Intelligent robot deburring using adaptive fuzzy hybrid position/force control," IEEE Transactions on Robotics and Automation, vol. 16, no. 4, pp. 325-335, 2000.

[5] Z. Wang, “Adaptive fuzzy system compensation based Model-free control for steer-by-wire systems with uncertainty,” Inter.J. Innov. Computing, Info. and Control, vol. 17, no. 1, pp. 141-152, 2021.

[6] T. Yang, N. Sun, and Y. Fang, "Adaptive Fuzzy Control for a Class of MIMO Underactuated Systems With Plant Uncertainties and Actuator Deadzones: Design and Experiments," IEEE Transactions on Cybernetics, doi: 10.1109/TCYB.2021.3050475.

[7] G. Lin, J. Yu, and J. Liu, "Adaptive Fuzzy Finite-Time Command Filtered Impedance Control for Robotic Manipulators," IEEE Access, vol. 9, pp. 50917-50925, 2021.

[8] S. Diao, W. Sun, L. Wang, et al., “Finite-Time Adaptive Fuzzy Control for Nonlinear Systems with Unknown Backlash-Like Hysteresis,” Int. J. Fuzzy System, 2021.

[9] A. Karami-Mollaee and H. Tirandaz, “Adaptive Fuzzy Fault Tolerant Control Using Dynamic Sliding Mode,” International Journal of Control, Automation, and Systems, vol. 16, no. 1, pp. 360-367, 2018.

[10] S. D. Nguyen, S. Choi, and T. Seo, “Adaptive fuzzy sliding control enhanced by compensation for explicitly unidentified aspects,” International Journal of Control, Automation, and Systems, vol. 15, no. 6, pp. 2906-2920, 2017.

[11] T. T. Nguyen, C. D. Nguyen, and T. T. Nguyen, “Research and application of Adaptive fuzzy sliding mode controller for electro-hydraulic tracking position servo systems,” Proc. of Vietnam Conference on Control and Automation – VCCA 2015, 2015, pp. 13-20.

[12] J. Liu, Intelligent control design and MATLAB simulation. Springer, 2018.

[13] N. M. Ghaleb and A. A. Aly, “Modeling and Control of 2-DOF Robot Arm,” Inter. J. of Emerging Engineering Research and Technology, vol. 6, no. 11, pp. 8-23, 2018.

[14] C. N. Nguyen and H. N. Duong, “Internal model control using neural networks: Application to SCARA robot,” J. of Sci. & Tech. Development, VNU Ho Chi Minh City, vol. 4, no. 8 & 9, pp. 65-71, 2001.




DOI: https://doi.org/10.34238/tnu-jst.4867

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved