PHÂN LỚP KHÁCH HÀNG DỰA TRÊN HÀNH VI, SỬ DỤNG KỸ THUẬT KHAI PHÁ DỮ LIỆU
Thông tin bài báo
Ngày nhận bài: 08/09/21                Ngày hoàn thiện: 09/11/21                Ngày đăng: 10/11/21Tóm tắt
Khai phá dữ liệu là một kỹ thuật phổ biến, được sử dụng để trích xuất thông tin hữu ích từ dữ liệu đã có, từ đó hỗ trợ ra các quyết định có lợi cho tương lai. Trong bài báo này, nhóm tác giả tập trung vào vấn đề phân lớp khách hàng, từ đó hỗ trợ tìm ra nhóm khách hàng tiềm năng bằng phương pháp cây quyết định Decision Tree J48, Naïve Bayes Classification và rừng ngẫu nhiên Random Forest. Kết quả cho thấy, mô hình dựa trên thuật toán cây quyết định cho độ chính xác cao nhất, có tính khả thi cao trong việc phân lớp dự đoán hành vi khách hàng. Kết quả này được kỳ vọng sẽ là gợi ý hiệu quả về một hướng tiếp cận cho các nhà phân tích khách hàng trong việc tìm ra nhóm khách hàng tiềm năng thuộc lĩnh vực ngân hàng.
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] S. Moro, R. Laureano, and P. Cortez, “Using Data Mining for Bank Direct Marketing: An Application of the CRISP-DM Methodology,” In P. Novais et al. (Eds.), Proceedings of the European Simulation and Modelling Conference - ESM'2011, Guimaraes, Portugal, October, 2011, pp. 117-121.
[2] S. Moro, P. Cortez, and P. Rita, “A Data-Driven Approach to Predict the Success of Bank Telemarketing,” Decision Support Systems, Elsevier, vol. 62, pp. 22-31, June 2014.
[3] V. L. M. E. Oliveira, “Analytical Customer Relationship Management in Retailing Supported by Data Mining Techniques,” PhD, Industrial Engineering and Management, Universidade do Porto, 1, 2019.
[4] S. Singhal and G. N. Singh, “Classification using Association Rule Mining,” International Journal of Computer Sicence & Communication, vol. 3, no. 2, pp. 256-258, 2012.
[5] İ. Nazlı and H. A. Guvenir. "Mining interesting rules in bank loans data," Proceedings of the Tenth Turkish Symposium on Artificial Intelligence and Neural Networks, 2001.
[6] F. Akhyani and A. Komeili, New approach based on proximity/remoteness measurement for customer classification, Electronic Comerce Research Springer, 2020.
[7] A. Suyanto, “Developing an LSTM-based Classification Model of IndiHome Customer Feedbacks,” International Conference on Data Science and Its Applications (ICoDSA), Indonesia, 2020.
[8] H. Y. Lam and Y. P. Tsang, Data analytics and the P2P cloud: an integrated model for strategy formulation based on customer behaviour, Springer, 2020.
[9] A. J. Hamid and T. M. Ahmed, “Developing Prediction Model of Loan Risk in Banks Using Data Mining,” Machine Learning and Applications, vol. 3, p. 9, 2016.
[10] D. Tomar and S. Agarwal, "A survey on Data Mining approaches for Healthcare," International Journal of Bio-Science and Bio-Technology, vol. 5, pp. 241-266, 2013.
[11] D. Dua and C. Graff, “UCI Machine Learning Repository,” Irvine, CA: University of California, School of Information and Computer Science, 2019. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/bank+marketing. [Accessed June 20, 2021].DOI: https://doi.org/10.34238/tnu-jst.4954
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu