CÁC ĐỊNH LÝ HỘI TỤ YẾU VÀ HỘI TỤ MẠNH CỦA CÁC LƯỢC ĐỒ THUẬT TOÁN CHO BÀI TOÁN CHẤP NHẬN TÁCH ĐA TẬP
Thông tin bài báo
Ngày nhận bài: 26/09/21                Ngày hoàn thiện: 05/11/21                Ngày đăng: 05/11/21Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] Y. Censor Y and T. Elfving, "A multiprojection algorithm using Bregman projections in a product spaces," Numer. Algorithms, vol. 8, pp. 221-239, 1994.
[2] C. Byrne, "Iterative oblique projection onto convex sets and the split feasibility problem," Inverse Problems, vol. 18, no. 2, pp. 441-453, 2002.
[3] C. Byrne, "A unified treatment of some iterative algorithms in signal processing and image reconstruction," Inverse Problems, vol. 20, pp. 103-120, 2004.
[4] Y. Censor, T. Bortfeld, B. Martin, and A. Trofimov, "A unified approach for inverse problems in intensity-modulated radiation therapy," Phys. Med. Biol., vol. 51, pp. 2353- 2365, 2006.
[5] Y. Censor, T. Elfving, N. Knop, and T. Bortfeld, "The multiple-sets split feasibility problem and its applications for inverse problems," Inverse Problems, vol. 21, pp. 2071-2084, 2005.
[6] Ng. Buong, "Iterative algorithms for the multiple-sets split feasibility problem in Hilbert spaces," Numer. Algorithms, vol. 76, no. 3, pp. 783-789, 2017.
[7] Ng. Buong, P. T. T. Hoai, and K. T. Binh, "Iterative regularization methods for the multiple-sets split feasibility problem in Hilbert spaces," Acta Math. Appl., vol. 165, no. 1, pp. 183-197, 2020.
[8] J. Wang, Y. Hu, C. K. W. Yu, and X. Zhuang, "A family of projection gradient methods for solving the multiple-sets split feasibility problem," J. Optim. Theory Appl., vol. 183, pp. 520-534, 2019.
[9] M. Wen, J. Peng, and Y. Tang, "A cyclic and simultaneous iterative method for solving the multiple-sets split feasibility problem," J. Optim. Theory Appl., vol. 166, pp. 844-860, 2015.
[10] H. K. Xu, "A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem," Inverse Problems, vol. 22, pp. 2021-2034, 2006.
[11] W. Zhang, D. Han, and Zh. Li, "A self-adaptive projection method for solving the multiple sets split feasibility problem," Inverse Problems, vol. 25, 115001, 16 pp, 2009.
[12] J. Zhao and Q. Yang, "A simple projection method for solving the multiple-sets split
feasibility problem," Inverse Probl. Sci. Eng., vol. 21. pp. 537-546, 2013.
[13] J. Zhao, Y. Zhang, and Q. Yang, "Modified projection methods for the split feasibility
problem and the the multiple-sets split feasibility problem," Appl. Math. Comput., vol. 219, pp. 1644-1653, 2012.
[14] Y. Censor, T. Elfving, and G. T. Herman, "Averaging strings of sequential iterations for convex feasibility problems," inInherently parallel algorithms in feasibility and optimization and their applications (Haifa, 2000) Stud. Comput. Math., 8, North-Holland, Amsterdam, 2001, pp. 101-113.
[15] G. Marino and H. K. Xu, "A general iterative method for nonexpansive mappings in Hilbert spaces," J. Math. Anal. Appl., vol. 318, pp. 43-52, 2006.
[16] P. L. Combettes and I. Yamada, "Compositions and convex combinations of averaged nonexpansive operators," J. Math. Anal. Appl., vol. 425, pp. 55-70, 2015.
[17] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, vol. 28, Cambridge University Press. Cambridge, UK, 1990.
[18] H. K. Xu, "An iterative approach to quadratic optimization," J. Optim. Theory Appl., vol. 116, pp. 659-678, 2003.
[19] L. C. Ceng, Q. H. Ansari, and J. Ch. Yao, "Mann-type steepest-descent and modified hybrid steepest descent methods for variational inequalities in Banach spaces," Num. Funct. Anal. Optim., vol. 29, no. 9-10, pp. 987-1033, 2008.
[20] P. E. Maingé, "Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization," Set-Valued Var. Anal., vol. 16, pp. 899-912, 2008.
[21] W. Takahashi and M. Toyoda, "Weak convergence theorems for nonexpansive mappings and monotone mappings," J. Optim. Theory and Appl., vol. 118, no. 2, pp. 417-428, 2003.
[22] W. Takahashi, H. K. Xu, and J. -C. Yao, "Iterative methods for generalized split feasibility problems in Hilbert spaces," Set-Valued Var. Anal., vol. 23, pp. 205-221, 2015.
DOI: https://doi.org/10.34238/tnu-jst.5084
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu