HIỆU QUẢ CỦA TẢO LAM TRONG CẢI TẠO ĐẤT NÔNG NGHIỆP VÀ TIỀM NĂNG ỨNG DỤNG TẠI VIỆT NAM - BÀI VIẾT TỔNG QUAN
Thông tin bài báo
Ngày nhận bài: 21/11/21                Ngày hoàn thiện: 09/03/22                Ngày đăng: 04/04/22Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] T. H. Nguyen, T. H. Le, and T. Bui, "Structure of Agriculture, Forestry, and Aquaculture in Vietnam's Economy," Statistical Science Information, vol. 1, pp. 35-40, 2019.
[2] T. D. Nguyen, C. T. Dao, and V. M. Dang, Mountainous Soils of Vietnam. Hanoi: Agriculture Publishing House, 2003.
[3] X. D. Phan et al., Dealing with Climate change in Vietnam. Hanoi: Thanh nien Publishing House, 2017.
[4] T. P. Le, K. P. Nguyen, C. N. Bui, X. H. Tran, and N. T. Le, "Saltwater intrusion risk in main rivers of Vinh Long province in the context of climate change and sea level rise," Journal of Hydrometeorology, vol. February, pp. 8-15, 2017.
[5] X. H. Nguyen, Processes of Soil Degradation. Hanoi: Vietnam National University Press, 2016.
[6] T. Q. Hoang and S. Kazuto, "Title “Organic Fertilizers” in Vietnam’s Markets: Nutrient Composition and Efficacy of Their Application," Sustainability, vol. 10, pp. 24-37, 2018.
[7] H. Vo, S. H. Ho, N. T. Le, and D. T. Duong, "The Results of Isolating Some Species of Heterocyst Cyanobacteria from Agricultural Soil of Dak Lak Province," VNU Journal of Science: Natural Sciences and Technology, vol. 1, pp. 57-63, 2006.
[8] T. N. H. Phung, "A. Coute & P. Bourrelly, Les Cyanophycées du delta du MéKong (Viet – Nam)," Nova Hedwigia, vol. 54, no. 403, 1992.
[9] D. T. Duong, Nitrogen-Fixation Cyanobacteria in Rice Fields. Hanoi: Agriculture Publishing House, 1994.
[10] M. Hedimbi, Introduction to Microbiology (MBL 3632), Namibia: Department of Biological Sciences, University of Namibia, 2010.
[11] P. Roger and S. Kulasooriya, Blue-Green Algae and Rice, Manila, Philipines: The International Rice Research Institute, 1980.
[12] G. Venkataraman, Algal Biofertilizers and Rice Cultivation, New Delhi: Today and Tomorrow's Printers and Publishers, 1972.
[13] A. Watanabe, S. Nishigaki, and C. Konishi, "Effect of nitrogen-fixing blue-green algae on the growth of rice plants," Nature, vol. 168, pp. 748-749, 1951.
[14] B. Mandal, P. Vlek, and L. Mandal, "Beneficial effects of blue-green algae and Azolla, excluding supplying nitrogen, on wetland rice fields: a review," Biol. Fertil. Soils, vol. 28, pp. 329-342, 1999.
[15] M. Yandigeri, A. Yadav, R. Srinivasan, S. Kashyap, and S. Pabbi, "Studies on mineral phosphate solubilization by cyanobacteria Westiellopsis and Anabaena," Microbiology, vol. 80, pp. 558-565, 2011.
[16] J. Komarek, J. Kastovsky, J. Mares, and J. Johansen, "Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach," Preslia, vol. 86, no. 4, pp. 295-335, 2014.
[17] P. Roger, "N2-fixing cyanobacteria as biofertilizers in rice fields," in A. Richmond (Ed.), Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Oxford, Blackwell Science Ltd., 2004, pp. 392-402.
[18] G. Venkataraman, Blue-green algae for rice production, FAO Soils Bulletin, 1981.
[19] N. Sharma, S. Tiwari, K. Tripathi, and A. Rai, "Sustainability and cyanobacteria (blue-green algae): facts and challenges," J. Appl. Phycol., vol. 23, pp. 1059-1081, 2011.
[20] E. Fernandez-Valiente, A. Ucha, A. Quesada, F. Legan´es, and R. Carreres, "Contribution of N2-fixing cyanobacteria to rice production: availability of nitrogen from 15Nlabelled cyanobacteria and ammonium sulphate to rice," Plant Soil, vol. 221, pp. 107-112, 2000.
[21] P. Irisarri, S. Gonnet, and J. Monza, "Cyanobacteria in Uruguayan rice fields: diversity, nitrogen fixing ability and tolerance to herbicides and combined nitrogen," J. Biotechnol., vol. 91, pp. 95-103, 2001.
[22] Berman-Frank, P. Lundgren, and P. Falkowski, "Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria," Res. Microbiol., vol. 154, pp. 157-164, 2003.
[23] P. Bose, U. Nagpal, G. Venkataraman, and S. Goyal, "Solubilization of tricalcium phosphate by blue-green algae," Curr. Sci., vol. 40, pp. 165-166, 1971.
[24] S. Mazhar and S. Hasnain, "Screening of native plant growth promoting cyanobacteria and their impact on Triticum aestivum var. Uqab 2000 growth," African J. Agric. Res., vol. 6, pp. 3988-3993, 2011.
[25] H. Cameron and G. Julian, "Utilization of hydroxyapatite by cyanobacteria as their sole source of phosphate and calcium," Plant Soil, vol. 109, pp. 123-124, 1988.
[26] G. Markou, D. Vandamme, and K. Muylaert, "Microalgal and cyanobacterial cultivation: the supply of nutrients," Water Res., vol. 65, pp. 186-202, 2014.
[27] M. Manjunath, A. Kanchan, K. Ranjan, S. Venkatachalam, R. Prasanna, B. Ramakrishnan, F. Hossain, L. Nain, Y. Shivay, A. Rai, and B. Singh, "Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra," Heliyon, vol. 2, p. e00066, 2016.
[28] R. Prasanna, N. Bidyarani, S. Babu, F. Hossain, Y. Shivay, and L. Nain, "Cyanobacterial inoculation elicits plant defense response and enhanced Zn mobilization in maize hybrids," Cogent Food Agric., vol. 1, no. 1, p. 998507, 2015.
[29] A. Rana, M. Joshi, R. Prasanna, Y. Singh Shivay, and L. Nain, "Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria," Eur. J. Soil Biol., vol. 50, pp. 118-126, 2012.
[30] S. Chamizo, G. Mugnai, F. Rossi, G. Certini, and R. De Philippis, "Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration," Front. Environ. Sci., vol. 6, no. 49, pp. 1-14, 2018.
[31] G. Mazor, G. Kidron, A. Vonshak, and A. Abeliovich, "The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts," FEMS Microbiol Ecol., vol. 21, no. 2, pp. 121-130, 1996.
[32] G. Colica, H. Li, F. Rossi, D. Li, Y. Liu, and R. De Philippis, "Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils," Soil Biol. Biochem., vol. 68, pp. 62-70, 2014.
[33] A. Adessi, R. Cruz de Carvalho, R. De Philippis, C. Branquinho, and J. Marques da Silva, "Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts," Soil Biol. Biochem., vol. 116, pp. 67-69, 2018.
[34] B. Zhang, Y. Zhang, J. Zhao, N. Wu, R. Chen, and J. Zhang, "Microalgal species variation at different successional stages in biological soil crusts of the Gurbantunggut Desert, Northwestern China," Biol. Fertil. Soils, vol. 45, pp. 539-547, 2009.
[35] N. Karthikeyan, R. Prasanna, L. Nain, and B. Kaushik, "Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat," Eur. J. Soil Biol., vol. 43, pp. 23-30, 2007.
[36] L. Nain, A. Rana, M. Joshi, S. Jadhav, D. Kumar, Y. Shivay, S. Paul, and R. Prasanna, "Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat," Plant Soil, vol. 331, pp. 217-230, 2010.
[37] N. Bidyarani, R. Prasanna, S. Babu, F. Hossain, and A. Saxena, "Enhancement of plant growth and yields in Chickpea (Cicer arietinum L.) through novel cyanobacterial and biofilmed inoculants," Microbiol. Res., vol. 188-189, pp. 97-105, 2016.
[38] R. Prasanna, S. Babu, N. Bidyarani, A. Kumar, S. Triveni, D. Monga, A. Mukherjee, S. Kranthi, N. Gokte-Narkhedkar, A. Adak, K. Yadav, L. Nain, and A. Saxena, "Prospecting cyanobacteria-fortified composts as plant growth promoting and biocontrol agents in cotton," Exp. Agric., vol. 51, pp. 42-65, 2015.
[39] M. Manjunath, A. Kanchan, K. Ranjan, S. Venkatachalam, R. Prasanna, B. Ramakrishnan, F. Hossain, L. Nain, Y. Shivay, A. Rai, and B. Singh, "Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra," Heliyon, vol. 2, p. e00066, 2016.
[40] A. Kanchan, K. Simranjit, K. Ranjan, R. Prasanna, B. Ramakrishnan, M. Singh, M. Hasan, and Y. Shivay, "Microbial biofilm inoculants benefit growth and yield of chrysanthemum varieties under protected cultivation through enhanced nutrient availability," Plant Biosyst., vol. 153, pp. 306-316, 2019.
[41] N. Renuka, R. Prasanna, A. Sood, A. Ahluwalia, R. Bansal, S. Babu, R. Singh, Y. Shivay, and L. Nain, "Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat," Environ. Sci. Pollut. Res., vol. 23, pp. 6608-6620, 2016.
[42] J. Coppens, O. Grunert, S. Van Den Hende, I. Vanhoutte, N. Boon, G. Haesaert, and L. De Gelder, "The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels," J. Appl. Phycol., vol. 28, pp. 2367-2377, 2016.
[43] J. Vessey, "Plant growth promoting rhizobacteria as biofertilizers," Plant Soil, vol. 555, pp. 571-586, 2019.
[44] D. Ronga, E. Biazzi, K. Parati, D. Carminati, E. Carminati, and A. Tava, "Microalgal biostimulants and biofertilisers in crop productions," Agronomy, vol. 9, no. 4, p. 192, 2019.
[45] D. Adams and P. Duggan, "Tansley Review No. 107. Heterocyst and akinete differentiation in cyanobacteria," New Phytol., vol. 144, no. 1, pp. 3-33, 1999.
[46] M. Maqubela, P. Mnkeni, O. Malam Issa, M. Pardo, and L. D’Acqui, "Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure fertility, and maize growth," Plant Soil, vol. 315, pp. 79-92, 2009.
[47] Y. Wang, Y. Q. Li, K. Lv, J. J. Cheng, X. L. Chen, Y. Ge, and X. Y. Yu, "Soil microalgae modulate grain arsenic accumulation by reducing dimethylarsinic acid and enhancing nutrient uptake in rice (Oryza sativa L.)," Plant Soil, vol. 430, pp. 99-111, 2018.
[48] Z. Svircev (Obreht), I. Tamas, P. Nenin, and A. Drobac, "Co-cultivation of N2-fixing cyanobacteria and some agriculturally important plants in liquid and sand cultures," Appl. Soil Ecol., vol. 6, pp. 301-308, 1997.
[49] M. J. Kim, C. K. Shim, Y. K. Kim, B. G. Ko, J. H. Park, S. G. Hwang, and B. H. Kim, "Effect of biostimulator Chlorella fusca on improving growth and qualities of Chinese chives and spinach in organic farm," Plant Pathol. J., vol. 34, pp. 567-574, 2018.
[50] M. Haggag Wafaa, H. Abouziena, M. Abd El, M. Wahed, E. Hoballa, A. Islam, and M. Elsehememy, "Application of blue-green algae for integrated disease management of barley against foliar pathogens," Journal of Chemical and Pharmaceutical Research, vol. 7, no. 10, pp. 266-272, 2015.
[51] H. Al-Jabri, P. Das, S. Khan, M. Thaher, and M. AbdulQuadir, "Treatment of Wastewaters by Microalgae and the Potential Applications of the Produced Biomass-A review," Water, vol. 13, pp.1-26, 2021.
[52] G. Randrianarison and M. Ashraf, "Microalgae: a potential plant for energy production," Geol Ecol Landscapes, vol. 1, no. 2, pp. 104-120, 2017.
[53] M.I. Khan, J.H. Shin, and J.D. Kim, "The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products," Microb Cell Fact., vol. 17, no. 1, p. 36, 2018.
[54] N. Selmani, M. Mirghani, and M. Alam, "Study the growth of microalgae in palm oil mill effluent waste water," IOP Conference series: earth and environmental science, Putrajaya, Malaysia, 2013.
[55] E. Posadas e. al., "Microalgae-based biofuels and bioproducts," in Gonzalez-Fernandez C, Muñoz R, editors. Microalgae cultivation in wastewater, Woodhead Publishing, 2017.
[56] C. H. Nguyen, D. D. Nguyen, and T. T. H. Le, "The Species Composition of Cyanobacteria in Rice Fields of Nghia Dan District, Nghe An Province," VNU Journal of Science: Natural Sciences and Technology, vol. 33, no. 2, pp. 24-29, 2017.
[57] T. B. N. Pham, "Variety of Blue-Green Algae (Cyanophyta) Species in Some Rice Fields and Aquaculture Ponds in Tra Vinh Province," Agriculture – Aquaculture, vol. 22, pp. 133-138, 2016.
[58] H. L. Nguyen and T. P. Ngo, "A taxonomic study on Cyanophyta in Dong Thap Muoi conservation area, Tien Giang Province," Journal of Science, Can Tho University, vol. 47A, pp. 86-92, 2016.
[59] C. B. Tran, "Technical efficiency of Chlorella sp. algae biomass culture using wastewater from Pangasianodon hypophthalmus ponds," Journal of Science, Can Tho University, vol. 28B, pp. 157-162, 2013.
[60] T. M. Pham, T. B. H. Doan, D. T. Tran, T. H. Nguyen, T. M. H. Pham, and Q. T. Nguyen, "Study on the Havesting Methods of Chlorella Sorokiniana and Scenedesmus Acuminatus Cultured in Municipal Wastewater," Science Technology, vol. 52, pp. 79-85, 2019.
[61] J. B. K. Park, R. J. Craggs, and A. N. Shilton, "Wastewater treatment high rate algal ponds for biofuel production," Bioresource Technology, vol. 102, pp. 35-42, 2011.DOI: https://doi.org/10.34238/tnu-jst.5272
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu