MỘT NGHIÊN CỨU SO SÁNH VỀ CÁC PHƯƠNG PHÁP LỰA CHỌN ĐẶC TRƯNG CHO VẬN TỐC GIÓ
Thông tin bài báo
Ngày nhận bài: 21/01/22                Ngày hoàn thiện: 19/04/22                Ngày đăng: 21/04/22Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] T. H. T. Nguyen, T. Nakayama, and M. Ishida, “Optimal capacity design of battery and hydrogen system for the DC grid with photovoltaic power generation based on the rapid estimation of grid dependency,” Int. J. Electr. Power Energy Syst., vol. 89, pp. 27-39, Jul. 2017, doi: 10.1016/j.ijepes.2016.12.012.
[2] Y. Jiang and G. Huang, “Short-term wind speed prediction: Hybrid of ensemble empirical mode decomposition, feature selection and error correction,” Energy Convers. Manag., vol. 144, pp. 340-350, Jul. 2017, doi: 10.1016/j.enconman.2017.04.064.
[3] C. Zhang, H. Wei, J. Zhao, T. Liu, T. Zhu, and K. Zhang, “Short-term wind speed forecasting using empirical mode decomposition and feature selection,” Renew. Energy, vol. 96, pp. 727-737, Oct. 2016, doi: 10.1016/j.renene.2016.05.023.
[4] I. M. Müller, “Feature selection for energy system modeling: Identification of relevant time series information,” Energy AI, vol. 4, p. 100057, Jun. 2021, doi: 10.1016/j.egyai.2021.100057.
[5] T. N. Lal, O. Chapelle, J. Weston, and A. Elisseeff, “Embedded Methods,” in Feature Extraction: Foundations and Applications, I. Guyon, M. Nikravesh, S. Gunn, and L. A. Zadeh, Eds. Berlin, Heidelberg: Springer, 2006, pp. 137-165, doi: 10.1007/978-3-540-35488-8_6.
[6] S. Matharaarachchi, M. Domaratzki, and S. Muthukumarana, “Assessing feature selection method performance with class imbalance data,” Mach. Learn. Appl., p. 100170, Oct. 2021, doi: 10.1016/j.mlwa.2021.100170.
[7] U. Stańczyk, “Feature Evaluation by Filter, Wrapper, and Embedded Approaches,” in Feature Selection for Data and Pattern Recognition, U. Stańczyk and L. C. Jain, Eds. Berlin, Heidelberg: Springer, 2015, pp. 29-44, doi: 10.1007/978-3-662-45620-0_3.
[8] K. P. Senthil and D. Lopez, “Feature Selection used for Wind Speed Forecasting with Data Driven Approaches,” J. Eng. Sci. Technol. Rev., vol. 8, no. 5, pp. 124-127, Oct. 2015, doi: 10.25103/jestr.085.17.
[9] A. Jović, K. Brkić, and N. Bogunović, “A review of feature selection methods with applications,” in 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), May 2015, pp. 1200-1205, doi: 10.1109/MIPRO.2015.7160458.
[10] Y. Saeys, I. Inza, and P. Larranaga, “A review of feature selection techniques in bioinformatics,” Bioinformatics, vol. 23, no. 19, pp. 2507-2517, Oct. 2007, doi: 10.1093/bioinformatics/btm344.
[11] W. Liu and J. Wang, “Recursive elimination-election algorithms for wrapper feature selection,” Appl. Soft Comput., p. 107956, Oct. 2021, doi: 10.1016/j.asoc.2021.107956.
[12] J. Guenther and O. Sawodny, “Feature Selection for Thermal Comfort Modeling based on Constrained LASSO Regression,” IFAC-Pap., vol. 52, no. 15, pp. 400-405, 2019, doi: 10.1016/j.ifacol.2019.11.708.
[13] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123-140, Aug. 1996, doi: 10.1007/BF00058655.
[14] Jerome Friedman Trevor Hastie Robert Tibshirani, The elements of statistical learning: Data Mining, Inference and Prediction, 2nd ed. Springer 2009. [Ebook] Available: https://link.springer.com/book/10.1007/978-0-387-84858-7
[15] L. Breiman and J. H. Friedman, Classification And Regression Trees, Taylor and Francis group, 2017 [Ebook]. Available: https://www.taylorfrancis.com/books/mono/10.1201/9781315139470/classification-regression-trees-leo-breiman-jerome-friedman-richard-olshen-charles-stone. [Accessed Oct. 10, 2021].
[16] W. Kirch, Ed., “Pearson’s Correlation Coefficient,” in Encyclopedia of Public Health, Dordrecht: Springer Netherlands, 2008, pp. 1090-1091, doi: 10.1007/978-1-4020-5614-7_2569.
[17] M. Aria, C. Cuccurullo, and A. Gnasso, “A comparison among interpretative proposals for Random Forests,” Mach. Learn. Appl., vol. 6, p. 100094, Dec. 2021, doi: 10.1016/j.mlwa.2021.100094.
[18] H. Kaneko, “Examining variable selection methods for the predictive performance of regression models and the proportion of selected variables and selected random variables,” Heliyon, vol. 7, no. 6, p. e07356, Jun. 2021, doi: 10.1016/j.heliyon.2021.e07356.
[19] Meteoblue, “Weather History Download Basel”, 2021 [Online]. Available: https://www.meteoblue.com/en/weather/archive/export/basel_switzerland_2661604?daterange=2021-10-06%20-%202021-10-13&domain=NEMSAUTO&min=2021-10-06&max=2021-10-13&utc_offset=2&timeResolution=hourly&temperatureunit=CELSIUS&velocityunit=KILOMETER_PER_HOUR&energyunit=watts&lengthunit=metric°ree_day_type=10%3B30&gddBase=10&gddLimit=30. [Accessed Dec. 27, 2021].
[20] Japan Meteorological Agency, “History weather data in Osaka,” 2021 [Online]. Available: https://www.data.jma.go.jp/obd/stats/etrn/index.php?prec_no=62&block_no=47772&year=2014&month=01&day=01&view=p1 [Accessed Dec. 27, 2021].
[21] L. Breiman, “Random Forest”, Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001, doi: 10.1023/A:1010933404324.DOI: https://doi.org/10.34238/tnu-jst.5487
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu