CÁC HẠT NANO TỪ LÕI - VỎ CoFe2O4/Fe3O4 CHO ĐỐT NÓNG CẢM ỨNG HIỆU QUẢ
Thông tin bài báo
Ngày nhận bài: 09/03/22                Ngày hoàn thiện: 28/04/22                Ngày đăng: 11/05/22Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] Y. W. Jun, J. W. Seo, and J. Cheon, “Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences,” Accounts of Chemical Research, vol. 41, pp. 179-189, 2008.
[2] S. H. Noh, W. Na, J. T. Jang, J. H. Lee, E. J. Lee, S. H. Moon, Y. Lim, J. S. Shin, and J. Cheon, “Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis,” Nano Letters, vol. 12, pp. 3716-3721, 2012.
[3] J. I. Park, N. J. Kang, Y. W. Jun, S. J. Oh, H. C. Ri, and J. Cheon, “Superlattice and Magnetism Directedby the Size and Shape of Nanocrystals,” Chemical Physics Chemistry, vol. 3, pp. 543-547, 2002.
[4] J. Gao, H. Gu, and B. Xu, “Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications,” Accounts of Chemical Research, vol. 42, pp. 1097-1107, 2009.
[5] Q. Pankhurst, N. Thanh, S. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” Journal of Physics D: Applied Physics, vol. 42, p. 224001, 2009.
[6] A. Akbarzadeh, M. Samiei, and S. Davaran, “Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine,” Nanoscale Research Letters, vol. 7, p. 144, 2012.
[7] C. Martinez- Boubeta, A. Makridis, M. Angelakeris, O. Iglesias, P. Guardia, A. Cabot, L. Yedra, S. Estrade, and F. Peiro, “Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications,” Scientìfic Reports, vol. 3, p. 1652, 2013.
[8] R. Kappiyoor, M. Liangruksa, R. Ganguly, and I. K. Puri, “The effects of magnetic nanoparticle properties on magnetic fluid hyperthermia,” Journal of Applied Physics, vol. 108, p. 094702, 2010.
[9] P. Guardia, R. Di Corato, L. Lartigue, C. Wilhelm, A. Espinosa, M. Garcia-Hernandez, F. Gazeau, L. Manna, and T. Pellegrino, “Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment,” ACS Nano, vol. 6, pp. 3080-3091, 2012.
[10] P. Hugounenq, M. Levy, D. Alloyeau, L. Lartigue, E. Dubois, V. Cabuil, C. Ricolleau, S. Roux, C. Wilhelm, and F. Gazeau, “Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia,” Journal of Physical Chemistry C, vol. 116, pp. 15702-15712, 2012.
[11] W. Wu, C. Z. Jiang, and V. A. L. Roy, “Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications,” Nanoscale, vol. 8, pp. 19421-19474, 2016.
[12] N. Lee, D. Yoo, D. Ling, M. H. Cho, T. Hyeon, and J. Cheon, “Iron oxide-based nanoparticles for multimodal imaging and magnetoresponsive therapy,” Chemical Reviews, vol. 115, pp. 10637-10689, 2015.
[13] J. H. Lee, J. Jang, J. Choi, S. H. Moon, S. Noh, J. Kim, J. G. Kim, I. S. Kim, K. I. Park, and J. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nature Nanotechnology, vol. 6, pp. 418-422, 2011.
[14] S. H. Moon, S. Noh, J. H. Lee, T. H. Shin, Y. Lim, and J. Cheon, “Ultrathin Interface Regime of Core−Shell Magnetic Nanoparticles for Effective Magnetism Tailoring,” Nano Letters, vol. 17, pp. 800-804, 2017.
[15] D. Polishchuk, N. Nedelko, S. Solopan, A. Ś. Waniewska, V. Zamorskyi, A. Tovstolytkin, and A. Belous, “Profound Interfacial Effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles,” Nanoscale Research Letters, vol. 13, p. 67, 2018.
[16] T. H. P. Le, D. H. Manh, H. N. Pham, T. P. Pham, J. Kováč, I. Skorvanek, T. L. Phan, M. H. Phan, and X. P. Nguyen, “High heating efficiency of interactive cobalt ferrite nanoparticles,” Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 11, p. 045005, 2020.
[17] L. T. Lu, N. T. Dung, L. D. Tung, C. T. Thanh, O. K. Quy, N. V. Chuc, S. Maenosono, and N. T. K. Thanh, “Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: The influence of solvent, surfactant, reductant and synthetic conditions,” Nanoscale, vol. 7, pp. 19596-19610, 2015.
[18] J. Mohapatra, A. Mitra, D. Bahadur, and M. Aslam, “Superspin glass behavior of self-interacting CoFe2O4 nanoparticles,” J. Alloys Compd, vol. 628, pp. 416-423, 2015.
[19] B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, Second Edition, Published by John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2009.
[20] H. M. Do, C. T. Nguyen, T. P. Pham, V. H. Le, and X. P. Nguyen, “Magnetic properties of La0.7Ca0.3MnO3 nanoparticles prepared by reactive milling,” J. Alloys Compd, vol. 479, pp. 828-831, 2009.
[21] F. Liu, Y. Hou, and S. Gao, “Exchange-coupled nanocomposites: chemical synthesis, characterization and applications,” Chem. Soc. Rev, vol. 43, pp. 8098-8113, 2014.
[22] L. T. H. Phong, D. H. Manh, P. H. Nam, V. D. Lam, B. X. Khuyen, B. S. Tung, T. N. Bach, D. K. Tung, N. X. Phuc, T. V. Hung, T. M. Ly, T. L. Phan, and M. H. Phan, “Structural, magnetic and hyperthermia properties and their correlation in cobalt-doped magnetite nanoparticles,” RSC Advances, vol. 12, pp. 698-707, 2022.DOI: https://doi.org/10.34238/tnu-jst.5649
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu