TÍNH CHẤT HẤP THỤ SÓNG ĐIỆN TỪ TRONG VÙNG TẦN SỐ VI BA CỦA VẬT LIỆU TỔ HỢP NỀN ĐIỆN MÔI La1,5Sr0,5NiO4/CoFe2O4
Thông tin bài báo
Ngày nhận bài: 14/04/22                Ngày hoàn thiện: 31/05/22                Ngày đăng: 31/05/22Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] Q. Yuchang, Z. Wancheng, L. Fa, and Z. Dongmei, “Optimization of electromagnetic matching of carbonyl iron/BaTiO3 composites for microwave absorption,” J. Magn. Magn. Mater., vol. 323, no. 5, pp. 600-606, 2011.
[2] O. Yalçin, H. Bayrakdar, and S. Özüm, “Spin-flop transition, magnetic and microwave absorption properties of α-Fe2O4 spinel type ferrite nanoparticles,” J. Magn. Magn. Mater., vol. 343, pp. 157-162, 2013.
[3] Z. J. Guan, J. T. Jiang, N. Chen, Y. X. Gong, and L. Zhen, “Carbon-coated CoFe–CoFe2O4 composite particles with high and dual-band electromagnetic wave absorbing properties,” Nanotechnology, vol. 29, p. 305604 (10pp), 2018.
[4] K. Wang, Y. Chen, R. Tian, H. Li, Y. Zhou, H. Duan, and H. Liu, “Porous Co-C core-shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance,” ACS Appl. Mater. Interfaces, vol. 10, no. 13, pp. 11333-11342, 2018.
[5] Q. H. Do, Q. D. Tran, V. T. Nguyen, V. T. Pham, and T. H. Pham, “Synthesis of reduced graphene oxide – CoFe2O4 ferrite nanocomposites for efficient adsorption of uranium from aqueous solution,” Proceedings of International Workshop on Advanced Materials Science and Nanotechnology VIII, 2016, pp. 126-132.
[6] V. T. Pham, Q. D. Tran, T. H. Nguyen, and V. T. Nguyen, “Synthesis of reduced graphene oxide - Cu0.5Ni0.5Fe2O4 - prussian blue nanocomposite materials for cesium adsorption from aqueous solution,” TNU Journal of Science and Technology, vol. 203, pp. 5-13, 2019.
[7] P. Lunkenheimer, S. Krohns, S. Riegg, S. G. Ebbinghaus, A. Reller, and A. Loidl, “Colossal dielectric constants in transition-metal oxides,” Eur. Phys. J. Special Topics, vol. 180, no. 1, pp. 61-89, 2010.
[8] D. T. Tran, D. L. Vu, V. H. Le, T. L. Phan, and S. C. Yu, “Spin reorientation and giant dielectric response in multiferroic La1.5Sr0.5NiO4+δ,” Adv. Natural Sci., Nanosci. Nanotechnol., vol. 4, p. 025010(1-4), 2013.
[9] H. Bayrakdar, “Complex permittivity, complex permeability and microwave absorption properties of ferrite-paraffin polymer composites,” J. Magn. Magn. Mater., vol. 323, pp. 1882-1885, 2011.
[10] J. Bi, C. Lin, D. Lu, A. Chen, and X. Meng, “Exchange coupled CoFe2O4/CoFe composites for enhanced microwave absorption properties by in-situ hydrothermal reduction,” Journal of Physics and Chemistry of Solids, vol. 164, p. 110624(1-7), 2022.
[11] Y. Cao, N. Farouk, N. Mortezaei, A. V. Yumashev, M. N. Akhtar, and A. Arabmarkadeh, “Investigation on microwave absorption characteristics of ternary MWCNTs/CoFe2O4/FeCo nanocomposite coated with conductive PEDOT-Polyaniline Co-polymers," Ceramics International, vol. 47, no. 9, pp. 12244-12251, 2021.
[12] F. Ye, L. Zhang, X. Yin et al., “Dielectric and EMW absorbing properties of PDCs-SiBCN annealed at different temperatures,” J. Eur. Ceram. Soc., vol. 33, no. 8, pp. 1469-1477, 2013.
[13] T. Wang, R. Han, G. Tan, J. Wei, L. Qiao, and F. Li, “Reflection loss mechanism of single layer absorber for flake-shaped carbonyl-iron particle composite,” J. Appl. Phys., vol. 112, no. 10, p. 104903 (1-6), 2012.DOI: https://doi.org/10.34238/tnu-jst.5850
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu