ĐÁNH GIÁ KHẢ NĂNG PHÂN GIẢI CỦA THỰC KHUẨN THỂ TRONG CÁC ĐIỀU KIỆN KHÁC NHAU ĐỐI VỚI VI KHUẨN ESCHERICHIA COLI ĐA KHÁNG THUỐC PHÂN LẬP TỪ CHUỖI SẢN XUẤT CÁ TRA | Ngọc | TNU Journal of Science and Technology

ĐÁNH GIÁ KHẢ NĂNG PHÂN GIẢI CỦA THỰC KHUẨN THỂ TRONG CÁC ĐIỀU KIỆN KHÁC NHAU ĐỐI VỚI VI KHUẨN ESCHERICHIA COLI ĐA KHÁNG THUỐC PHÂN LẬP TỪ CHUỖI SẢN XUẤT CÁ TRA

Thông tin bài báo

Ngày nhận bài: 03/06/22                Ngày hoàn thiện: 04/11/22                Ngày đăng: 23/11/22

Các tác giả

1. Tống Thị Ánh Ngọc Email to author, Trường Đại học Cần Thơ
2. Trần Thị Mộng Cầm, Trường Đại học Cần Thơ
3. Phạm Kim Duyên, Trường Đại học Cần Thơ
4. Trần Trâm Anh, Trường Đại học Cần Thơ
5. Nguyễn Cẩm Tú, Trường Đại học Cần Thơ
6. Nguyễn Thị Thu Nga, Trường Đại học Cần Thơ

Tóm tắt


Nghiên cứu này được thực hiện nhằm đánh giá khả năng phân giải của hai dòng thực khuẩn thể N9 và B80 đối với các chủng vi khuẩn Escherichia coli đa kháng thuốc được phân lập từ chuỗi sản xuất cá Tra. Nghiên cứu được tiến hành trong hai loại môi trường mô phỏng thực phẩm từ dịch trích thịt cá Tra và thịt ức gà phi lê được bổ sung thực khuẩn thể có hệ số bội nhiễm - MOI khác nhau (từ 100 đến 1000) và ủ ở nhiệt độ 4±1oC. Kết quả nghiên cứu cho thấy, thực khuẩn thể N9 (MOI 1000) và B80 (MOI 100) cho thấy hiệu quả phân giải vi khuẩn kí chủ tốt được duy trì từ 1 đến 24 giờ trong các môi trường mô phỏng thực phẩm, cụ thể mật số vi khuẩn E. coli <1 log CFU/mL sau 1-24 giờ tiếp xúc với thực khuẩn thể ở nhiệt độ 4±1oC. Do đó, nghiên cứu này cho thấy tiềm năng ứng dụng thực khuẩn thể để kiểm soát vi khuẩn E. coli đa kháng thuốc cũng như các vi khuẩn gây bệnh khác trong chuỗi sản xuất thực phẩm.

Từ khóa


Dịch trích cá Tra; Dịch trích gà; Đa kháng thuốc; Escherichia coli; Thực khuẩn thể

Toàn văn:

PDF

Tài liệu tham khảo


[1] Z. D. Moye, J. Woolston, and A. Sulakvelidze, "Bacteriophage applications for food production and processing," Viruses, vol. 10, no. 4, p. 205, 2018.

[2] C. C. Adley and M. P. Ryan, “Chapter 1 - The nature and extent of foodborne disease,” in Antimicrobial food packaging. Elsevier, pp. 1-10, 2016.

[3] A. H. Havelaar, M. D. Kirk, P. R. Torgerson, H. J. Gibb, T. Hald, R. J. Lake, N. Praet, D. C. Bellinger, N. R. Silva, and N. Gargouri, "World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010," PLoS Med, vol. 12, 2015, Art. no. e1001923.

[4] Y.-Y. Liu, Y. Wang, T. R. Walsh, L.-X. Yi, R. Zhang, J. Spencer, Y. Doi, G. Tian, B. Dong, and X. Huang, "Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study," The Lancet Infectious Diseases, vol. 16, no. 2, pp. 161-168, 2016.

[5] W. Jansomboon, S. Boontanon, N. Boontanon, C. Polprasert, and W. Liamlaem, "Food safety management of imported fishery products in Thailand: antibiotic standards and case study of enrofloxacin contamination in imported Pangasius catfish," International Food Research Journal, vol. 25, no. 5, pp. 2081-2089, 2018.

[6] D. A. Salako, N. T. Phan, C. H. Nguyen, T. Miyamoto, and T. A. N. Tong, "Prevalence of antibiotics resistance Escherichia coli collected from Pangasius catfish (Pangasius hypophthalmus) fillets during processing at two factories in Mekong Delta Vietnam," Food Research, vol. 4, no. 5, pp. 1785-1793, 2020.

[7] R. Boss, G. Overesch, and A. Baumgartner, "Antimicrobial resistance of Escherichia coli, Enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus from raw fish and seafood imported into Switzerland," Journal of Food Protection, vol. 79, no. 7, pp. 1240-1246, 2016.

[8] V. Nguyen and T. Dang, "Antimicrobial usage and Antimicrobial resistance in Vietnam," In Aquatic AMR Workshop 1, pp. 10–11. Mangalore, India, 2017.

[9] S. Sarter, H. N. K. Nguyen, J. Lazard, and D. Montet, "Antibiotic resistance in Gram-negative bacteria isolated from farmed catfish," Food Control, vol. 18, no. 11, pp. 1391-1396, 2007.

[10] D. T. A. Nguyen, M. Kanki, P. D. Nguyen, H. T. Le, P. T. Ngo, D. N. M. Tran, N. H. Le, C. V. Dang, T. Kawai, and R. Kawahara, "Prevalence, antibiotic resistance, and extended-spectrum and AmpC β-lactamase productivity of Salmonella isolates from raw meat and seafood samples in Ho Chi Minh City, Vietnam," International Journal of Food Microbiology, vol. 236, pp. 115-122, 2016.

[11] T. T. H. Van, J. Chin, T. Chapman, L. T. Tran, and P. J. Coloe, "Safety of raw meat and shellfish in Vietnam: an analysis of Escherichia coli isolations for antibiotic resistance and virulence genes," International Journal of Food Microbiology, vol. 124, no. 3, pp. 217-223, 2008.

[12] K. E. Kortright, B. K. Chan, J. L. Koff, and P. E. Turner, "Phage therapy: a renewed approach to combat antibiotic-resistant bacteria," Cell Host and Microbe, vol. 25, no. 2, pp. 219-232, 2019.

[13] L. M. Kasman and L. D. Porter, “Bacteriophages,” 2020. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK493185/. [Accessed July 23, 2021].

[14] M. Połaska and B. Sokołowska, "Bacteriophages-a new hope or a huge problem in the food industry," AIMS Microbiology, vol. 5, no. 4, pp. 324-346, 2019.

[15] M. Kazi and U. S. Annapure, "Bacteriophage biocontrol of foodborne pathogens," Journal of Food Science and Technology, vol. 53, pp. 1355-1362, 2016.

[16] L. Ushanov, B. Lasareishvili, I. Janashia, and A. E. Zautner, "Application of Campylobacter jejuni phages: challenges and perspectives," Animals, vol. 10, no. 2, p. 279, 2020.

[17] S. Sharma, S. Chatterjee, S. Datta, R. Prasad, D. Dubey, R. K. Prasad, and M. G. Vairale, "Bacteriophages and its applications: An overview," Folia Microbiologica, vol. 62, pp. 17-55, 2017.

[18] H. Liu, Y. Niu, R. Meng, J. Wang, J. Li, R. Jonhson, T. McAllister, and K. Stanford, "Control of Escherichia coli O157 on beef at 37, 22 and 4oC by T5-, T10, T4- and O1-like bacteriophages," Food Microbiology, vol. 51, pp. 69-73, 2015.

[19] P. Garcia, M. Dobrea, and D. Georgescu, "Microbial population dynamics in presence of lactococcal bacteriophage during ripening of traditional raw milk Romanian cheese," Journal of Dairy Science, vol. 92, pp. 3019-3026, 2009.

[20] S. Guenther and M. Loessner, "Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses," Bacteriophage, vol. 1, pp. 94-100, 2011.

[21] S. Guenther, D. Huwyler, S. Richard, and M. Loessner, "Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods," Applied and Environmental Microbiology, vol. 75, pp. 93-100, 2009.

[22] T. Abuladze, M. Li, M. Y. Menetrez, T. Dean, A. Senecal, and A. Sulakvelidze, "Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7," Applied and Environmental Microbiology, vol. 74, no. 20, pp. 6230-6238, 2008.

[23] I. R. Cooper, "A review of current methods using bacteriophages in live animals, food and animal products intended for human consumption," Journal of Microbiological Methods, vol. 130, pp. 38-47, 2016.

[24] H. Cui, L. Yuan, and L. Lin, "Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157:H7 in beef," Carbohydrate Polymers, vol. 177, pp. 156-164, 2017.

[25] D. M. Gouvêa, R. C. S. Mendonça, M. E. S. Lopez, and L. S. Batalha, "Absorbent food pads containing bacteriophages for potential antimicrobial use in refrigerated food products," LWT-Food Science and Technology, vol. 67, pp. 159-166, 2016.

[26] J. A. Hermoso, J. L. García, and P. García, "Taking aim on bacterial pathogens: from phage therapy to enzybiotics," Current Opinion in Microbiology, vol. 10, no. 5, pp. 461-472, 2007.

[27] A. M. Kropinski, "Bacteriophage research: What we have learnt and what still needs to be addressed," Research in Microbiology, vol. 169, no. 9, pp. 481-487, 2018.

[28] A. G. de Melo, S. Levesque, and S. Moineau, "Phages as friends and enemies in food processing," Current Opinion in Biotechnology, vol. 49, pp. 185-190, 2018.

[29] S. Meaden and B. Koskella, "Exploring the risks of phage application in the environment," Frontiers in Microbiology, vol. 4, p. 358, 2013.

[30] T. A. N. Tong, C. T. Nguyen, C. H. Nguyen, and T. T. N. Nguyen, "Studying antimicrobial activity of bacteriophages on multi-antibiotic resistant Escherichia coli isolated from Tra fish (Pangasius hypophthalmus) - In Vietnamese," TNU Journal of Science and Technology, vol. 226, no. 5, pp. 147-155, 2021.

[31] B. Noseda, J. Dewulf, J. Goethals, P. Ragaert, I. Van Bree, D. Pauwels, H. Van Langenhove, and F. Devlieghere, "Effect of food matrix and pH on the volatilization of bases (TVB) in packed North Atlantic gray shrimp (Crangon crangon): volatile bases in MAP fishery products," Journal of Agricultural and Food Chemistry, vol. 58, no. 22, pp. 11864-11869, 2010.

[32] L. D. Nguyen, T. V. H. Bui, D. Q. Nguyen, V. T. Pham, T. H. Pham, V. H. Le, C. T. Chung, and T. H. Le, Microbiology. Part II: Physiology, biochemistry, genetics, immunology and microbial ecology. Science and Technology Publishing, 2019, p. 725.

[33] S. C. Park, I. Shimamura, M. Fukunaga, K. I. Mori, and T. Nakai, "Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control," Applied and Environmental Microbiology, vol. 66, no. 4, pp. 1416-1422, 2000.

[34] A. Jurczak-Kurek, T. Gąsior, B. Nejman-Faleńczyk, S. Bloch, A. Dydecka, G. Topka, A. Necel, M. Jakubowska-Deredas, M. Narajczyk, and M. Richert, "Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage," Scientific Reports, vol. 6, no. 1, pp. 1-17, 2016.

[35] M. J. Lai, K. C. Chang, S. W. Huang, C. H. Luo, P. Y. Chiou, C. C. Wu, and N. T. Lin, "The tail associated protein of Acinetobacter baumannii phage ΦAB6 is the host specificity determinant possessing exopolysaccharide depolymerase activity," PloS One, vol. 11, no. 4, 2016, Art. no. e0153361.

[36] T. N. Nguyen, T. L. Huynh, T. H. N. Nguyen, K. N. H. Pham, H. A. Luu, and H. X. Nguyen, "Isolation and characterization of bacteriophages against Escherichia coli isolates from chicken farms," Advances in Animal and Veterinary Sciences, vol. 8, no. 2, pp. 161-166, 2020.

[37] D. Conner, "Temperature and NaCl affect growth and survival of Escherichia coli O157:H7 in poultry‐based and laboratory media," Journal of food Science, vol. 57, no. 2, pp. 532-533, 1992.

[38] S. J. James and C. James, “Chilling and freezing of foods. Second Edition,” in Food Processing: Principles Applications. Editors: John Wiley & Sons, Ltd., 2014, pp. 79-105.

[39] D. Gutiérrez, L. Rodríguez-Rubio, B. Martínez, A. Rodríguez, and P. García, "Bacteriophages as weapons against bacterial biofilms in the food industry," Frontiers in Microbiology, vol. 7, p. 825, 2016.

[40] B. Guttman, R. Raya, and E. Kutter, “Basic Phage Biology,” in Bacteriophages: Biology and applications, E. Kutter and Sulakvelidze A., Editors, CRC Press USA, 2005.

[41] J. Sommer, C. Trautner, A. K. Witte, S. Fister, D. Schoder, P. Rossmanith, and P.-J. Mester, "Don’t shut the stable door after the phage has bolted - The importance of bacteriophage inactivation in food environments," Viruses, vol. 11, no. 5, p. 468, 2019.

[42] M. Islam, Y. Zhou, L. Liang, I. Nime, K. Liu, T. Yan, and J. Li, "Application of a phage cocktail for control of Salmonella in foods and reducing biofilms," Viruses, vol. 11, no. 9, p. 841, 2019.

[43] M. D. Hoang, M. S. Hoang, K. I. Honjoh, and T. Miyamoto, "Isolation and application of bacteriophages to reduce Salmonella contamination in raw chicken meat," LWT-Food Science and Technology, vol. 91, pp. 353-360, 2018.

[44] M. S. Hoang, M. D. Hoang, Y. Masuda, K. I. Honjoh, and T. Miyamoto, "Application of bacteriophages in simultaneously controlling Escherichia coli O157: H7 and extended-spectrum beta-lactamase producing Escherichia coli," Applied Microbiology and Biotechnology, vol. 102, no. 23, pp. 10259-10271, 2018.

[45] N. E. Galarce, J. L. Bravo, J. P. Robeson, and C. F. Borie, "Bacteriophage cocktail reduces Salmonella enterica serovar Enteritidis counts in raw and smoked salmon tissues," Revista Argentina de Microbiologia, vol. 46, no. 4, pp. 333-337, 2014.

[46] H. M. Hungaro, R. C. S. Mendonça, D. M. Gouvêa, M. C. D. Vanetti, and C. L. de Oliveira Pinto, "Use of bacteriophages to reduce Salmonella in chicken skin in comparison with chemical agents," Food Research International, vol. 52, no. 1, pp. 75-81, 2013.

[47] G. O'Flynn, R. Ross, G. Fitzgerald, and A. Coffey, "Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157: H7," Applied Environmental Microbiology, vol. 70, no. 6, pp. 3417-3424, 2004.




DOI: https://doi.org/10.34238/tnu-jst.6107

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved