MẠCH DAO ĐỘNG ĐIỀU KHIỂN BẰNG ĐIỆN ÁP (VCO) TỪ 0,1 ĐẾN 1,65 GHz TRÊN CÔNG NGHỆ CMOS 180 nm
Thông tin bài báo
Ngày nhận bài: 18/09/22                Ngày hoàn thiện: 07/10/22                Ngày đăng: 10/10/22Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] B. Razavi, Design of Integrated Circuits for Optical Communication Systems. John Wiley & Sons, Hoboken, New Jersey, 2012.
[2] B. Razavi and Behzad, Design of Analog CMOS Integrated Circuits. McGraw-Hill, New York, 2017.
[3] S. Salem, M. Tajabadi, and M. Saneei, “The Design and Analysis of Dual Control Voltages Delay Cell for Low Power and Wide Tuning Range Ring Oscillators in 65nm CMOS Technology for CDR Applications,” J. Electronics and Communications (AEÜ), vol. 82, pp. 406-412, Dec. 2017.
[4] K. Peepra and R. C. Gurjar, “A Linear Current Starved Voltage Controlled Ring Oscillator With Wide Tuning Range Using 180nm CMOS Technology,” in International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering - (ICRIEECE), India, Feb. 2020, doi: 10.1109/ICRIEECE44171.2018.9008640.
[5] S. Suman, K. G. Sharma, and P. K. Ghosh, “Analysis and Design of Current Starved Ring VCO,” in International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), India, Nov. 2016, doi: 10.1109/ICEEOT.2016.7755299.
[6] W. C. Lai, “Chip Design of a High Output Quadrature Phase Ring Voltage Controlled Oscillator with Noise Reduction for Communication Applications,” in 3rd IEEE International Conference on Knowledge Innovation and Invention, Taiwan, Jan. 2021, doi: 10.1109/ICKII50300.2020.9318777.
[7] X. Gui and M. M. Green, “Design of CML Ring Oscillators with Low Supply Sensitivity,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 7, pp. 1753–1763, Jul. 2013.
[8] I. Sun, J. Yin, P. Mak, and R. P. Martins, “A Comparative Study of 8-Phase Feedforward-Coupling Ring VCOs,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 4, pp. 527-531, April, 2019.
[9] D. Ito, T. Tanaka, M. Nakamura, and K. Kishine, “A wideband differential VCO based on double-short-path loop architecture,” in International SoC Design Conference (ISOCC), Korea, April, 2020, doi: 10.1109/ISOCC47750.2019.9078464.
[10] N. Ghaderi, M. Zhang, D. Yu, and L. Lorenzelli, “A New Low Power Ring Voltage-Controlled Oscillator with a Wide Tuning Range,” in International Electrical Engineering Congress (iEECON2021), Thailand, March, 2021, doi: 10.1109/iEECON51072.2021.9440360.
[11] H. T. Nguyen, M. H. Pham, T. L. Le, T. T. Le, and T. Q. Nguyen, “Design wide-band reference-less continuous-rate Clock and Data recovery circuit using 180 nm CMOS process,” Journal of Military Science and Technology, vol. 63, pp. 46-58, Oct. 2019.
[12] R. Yang, K. Chao, S. Hwu, C. Liang, and S. Liu, “A 155.52 Mbps-3.125 Gbps Continuous-Rate Clock-and-Data-Recovery Circuit,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1380-1390, Jun. 2006.
[13] J. Jalil, M. B. I. Reaz, and M. A. M. Ali, “CMOS Differential Ring Oscillators: Review of the Performance of CMOS ROs in Communication Systems,” IEEE Microwave Magazine, vol. 14, no. 5, pp. 97-109, 2013.
[14] A. A. Abidi, “Phase noise and jitter in CMOS ring oscillators,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1803-1816, July, 2006.
[15] D. Samaras and F. Yu, “High performance, wide tuning range 65nm CMOS tunable Voltage Controlled Ring Oscillator up to 11 GHz,” in 9th International Conference on Modern Circuits and Systems Technologies (MOCAST), Germany, Sep. 2020, doi: 10.1109/MOCAST49295.2020.9200291.
[16] J. S. Gaggatur, “A 1.8 - 6.3 GHz Quadrature Ring VCO-based Fast-settling PLL for Wireline I/O in 55nm CMOS,” in 34th International Conference on VLSI Design (VLSID), India, April, 2021, doi: 10.1109/VLSID51830.2021.00055.
[17] A. Martin, Cadence Design Environment, New Mexico State University, Oct. 2002.
DOI: https://doi.org/10.34238/tnu-jst.6523
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu