MỘT PHƯƠNG PHÁP LẶP MỚI GIẢI BẤT ĐẲNG THỨC BIẾN PHÂN GIẢ ĐƠN ĐIỆU
Thông tin bài báo
Ngày nhận bài: 16/02/23                Ngày hoàn thiện: 27/04/23                Ngày đăng: 28/04/23Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] H. Iiduka, “Fixed point optimization algorithm and its application to power control in CDMA data networks,” Mathematical Programming, vol. 133, pp. 227–242, 2012.
[2] H. Iiduka and I. Yamada, “An ergodic algorithm for the power-control games for CDMA data networks,” Journal of Mathematical Modelling and Algorithms, vol. 8, pp. 1–18, 2009.
[3] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.
[4] G.M. Korpelevich, “The extragradient method for finding saddle points and other problems,” Ekonomikai Matematicheskie Metody, vol. 12, pp. 747–756, 1976.
[5] P.K. Anh and T.N. Hai, “Splitting extragradient-like algorithms for strongly pseudomonotone equilibrium problems,” Numerical Algorithms, vol. 76, pp. 67–91, 2017.
[6] D.V. Hieu and D.V. Thong, “New extragradient-like algorithms for strongly pseudomonotone variational inequalities,” Journal of Global Optimization, vol. 70, pp. 385–399, 2018.
[7] J. Yang and H. Liu, “Strong convergence result for solving monotone variational inequalities in Hilbert space,” Numerical Algorithms, vol. 80, pp. 741–752, 2019.
[8] L.D. Popov, “A modification of the Arrow-Hurwicz method for searching for saddle points,” Mathemati-cal notes of the Academy of Sciences of the USSR, vol. 28, no. 5, pp. 777–784, 1980.
[9] Y.V. Malitsky and V.V. Semenov, “An extragradient algorithm for monotone variational inequalities,” Cybernetics and Systems Analysis, vol. 50, pp. 271–277, 2014.
[10] T.N. Hai, “Two modified extragradient algorithms for solving variational inequalities,” Journal of Global Optimization, vol. 78, no. 1, pp. 91-106, 2020.
[11] H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2011.
[12] R.P. Agarwal, D. O’Regan, and D.R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Springer, 2009.
[13] H.H. Bauschke and J.M. Borwein, “On projection algorithms for solving convex feasibility problems,” SIAM Review, vol. 38, pp. 367–426, 1996.
DOI: https://doi.org/10.34238/tnu-jst.7344
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu