TẠO ENZYME NUCLEASE CÓ KHẢ NĂNG NHẬN DIỆN CẤU TRÚC G-QUADRUPLEX SONG SONG VÀ CẮT DNA TẠI VỊ TRÍ ĐẶC HIỆU
Thông tin bài báo
Ngày nhận bài: 07/03/23                Ngày hoàn thiện: 16/05/23                Ngày đăng: 16/05/23Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] M. Gellert, M. N. Lipsett, and D. R. Davies, "Helix Formation by Guanylic Acid," Proceedings of the National Academy of Sciences of the United States of America, vol. 48, no. 12, pp. 2013-2018, 1962, doi: 10.1073/pnas.48.12.2013.
[2] D. Sen and W. Gilbert, "Formation of Parallel 4-Stranded Complexes by Guanine-Rich Motifs in DNA and Its Implications for Meiosis," Nature, vol. 334, no. 6180, pp. 364-366, 1988, doi: 10.1038/334364a0.
[3] S. Burge, G. N. Parkinson, P. Hazel, A. K. Todd, and S. Neidle, "Quadruplex DNA: sequence, topology and structure," Nucleic Acids Research, vol. 34, no. 19, pp. 5402-5415, 2006, doi: 10.1093/nar/gkl655.
[4] H. J. Lipps and D. Rhodes, "G-quadruplex structures: in vivo evidence and function," Trends in Cell Biology, vol. 19, no. 8, pp. 414-422, 2009, doi: 10.1016/j.tcb.2009.05.002.
[5] N. Maizels and L. T. Gray, "The G4 genome," PLoS Genet, vol. 9, no. 4, 2013, Art. no. e1003468, doi: 10.1371/journal.pgen.1003468.
[6] G. N. Parkinson, M. P. H. Lee, and S. Neidle, "Crystal structure of parallel quadruplexes from human telomeric DNA," Nature, vol. 417, no. 6891, pp. 876-880, 2002, doi: 10.1038/nature755.
[7] D. J. Patel, A. T. Phan, and V. Kuryavyi, "Human telomere, oncogenic promoter and 5'-UTR G-quadruplexes: Diverse higher order DNA and RNA targets for cancer therapeutics," Nucleic Acids Research, vol. 35, no. 22, pp. 7429-7455, 2007, doi: 10.1093/nar/gkm711.
[8] S. Balasubramanian, L. H. Hurley, and S. Neidle, "Targeting G-quadruplexes in gene promoters: a novel anticancer strategy?," Nat Rev Drug Discov, vol. 10, no. 4, pp. 261-275, 2011, doi: 10.1038/nrd3428.
[9] D. Lin et al., "A benzindole substituted carbazole cyanine dye: a novel targeting fluorescent probe for parallel c-myc G-quadruplexes," Analyst, vol. 140, no. 16, pp. 5772-5780, 2015, doi: 10.1039/c5an00866b.
[10] C. K. Kwok, Y. Ding, S. Shahid, S. M. Assmann, and P. C. Bevilacqua, "A stable RNA G-quadruplex within the 5'-UTR of Arabidopsis thaliana ATR mRNA inhibits translation," Biochem J, vol. 467, no. 1, pp. 91-102, 2015, doi: 10.1042/BJ20141063.
[11] S. P. P. Pany, M. Sapra, J. Sharma, V. Dhamodharan, S. Patankar, and P. I. Pradeepkumar, "Presence of Potential G-Quadruplex RNA-Forming Motifs at the 5'-UTR of PP2Acalpha mRNA Repress Translation," Chembiochem, 2019, doi: 10.1002/cbic.201900336.
[12] R. Simone, P. Fratta, S. Neidle, G. N. Parkinson, and A. M. Isaacs, "G-quadruplexes: Emerging roles in neurodegenerative diseases and the non-coding transcriptome," Febs Lett, vol. 589, no. 14, pp. 1653-1668, 2015, doi: 10.1016/j.febslet.2015.05.003.
[13] D. Ji, M. Juhas, C. M. Tsang, C. K. Kwok, Y. Li, and Y. Zhang, "Discovery of G-quadruplex-forming sequences in SARS-CoV-2," Brief Bioinform, vol. 22, no. 2, pp. 1150-1160, 2021, doi: 10.1093/bib/bbaa114.
[14] C. Zhao et al., "Targeting RNA G-Quadruplex in SARS-CoV-2: A Promising Therapeutic Target for COVID-19?," Angew Chem Int Ed Engl, vol. 60, no. 1, pp. 432-438, 2021, doi: 10.1002/anie.202011419.
[15] L. T. A. Nguyen and D. T. Dang, "RHAU Peptides Specific for Parallel G-Quadruplexes: Potential Applications in Chemical Biology," Mol Biotechnol, vol. 65, no. 3, pp. 291-299, 2023, doi: 10.1007/s12033-022-00552-7.
[16] J. L. Mergny and C. Helene, "G-quadruplex DNA: A target for drug design," Nature Medicine, vol. 4, no. 12, pp. 1366-1367, 1998, doi: 10.1038/3949.
[17] H. Y. Han and L. H. Hurley, "G-quadruplex DNA: a potential target for anti-cancer drug design," Trends in Pharmacological Sciences, vol. 21, no. 4, pp. 136-142, 2000, doi: 10.1016/S0165-6147(00)01457-7.
[18] S. M. Kerwin, "G-quadruplex DNA as a target for drug design," Current Pharmaceutical Design, vol. 6, no. 4, pp. 441-471, 2000, doi: 10.2174/1381612003400849.
[19] S. M. Kerwin, B. Mamiya, C. Brian, T. Fletcher, J. T. Kern, and P. W. Thomas, "G-quadruplex DNA as a target for drug discovery: Design of telomerase inhibitors based on G-quadruplex DNA structure and dynamics," Abstracts of Papers of the American Chemical Society, vol. 219, pp. U6-U6, Mar 26 2000.
[20] S. D. Creacy, E. D. Routh, F. Iwamoto, Y. Nagamine, S. A. Akman, and J. P. Vaughn, "G4 resolvase 1 binds both DNA and RNA tetramolecular quadruplex with high affinity and is the major source of tetramolecular quadruplex G4-DNA and G4-RNA resolving activity in HeLa cell lysates," J Biol Chem, vol. 283, no. 50, pp. 34626-34634, 2008, doi: 10.1074/jbc.M806277200.
[21] B. Heddi, V. V. Cheong, H. Martadinata, and A. T. Phan, "Insights into G-quadruplex specific recognition by the DEAH-box helicase RHAU: Solution structure of a peptide-quadruplex complex," Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no. 31, pp. 9608-9613, 2015, doi: 10.1073/pnas.1422605112.
[22] M. C. Chen et al., "Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36," Nature, vol. 558, no. 7710, pp. 465-469, 2018, doi: 10.1038/s41586-018-0209-9.
[23] B. Heddi, V. V. Cheong, E. Schmitt, Y. Mechulam, and A. T. Phan, "Recognition of different base tetrads by RHAU (DHX36): X-ray crystal structure of the G4 recognition motif bound to the 3'-end tetrad of a DNA G-quadruplex," J Struct Biol, vol. 209, no. 1, 2020, Art. no. 107399, doi: 10.1016/j.jsb.2019.10.001.
[24] D. T. Dang, L. T. A. Nguyen, T. T. T. Truong, H. D. Nguyen, and A. T. Phan, "Construction of a G-quadruplex-specific DNA endonuclease," Chem Commun (Camb), vol. 57, no. 37, pp. 4568-4571, 2021, doi: 10.1039/d0cc05890d.
[25] D. T. Dang and A. T. Phan, "Development of Fluorescent Protein Probes Specific for Parallel DNA and RNA G-Quadruplexes," Chembiochem, vol. 17, no. 1, pp. 42-45, 2016, doi: 10.1002/cbic.201500503.
[26] D. T. Dang and A. T. Phan, "Development of a ribonuclease containing a G4-specific binding motif for programmable RNA cleavage," Sci Rep, vol. 9, no. 1, p. 7432, 2019, doi: 10.1038/s41598-019-42143-8.
[27] T. T. Thi Truong, C. Cao, and D. T. Dang, "Parallel G-quadruplex-mediated protein dimerization and activation," RSC Adv, vol. 10, no. 50, pp. 29957-29960, 2020, doi: 10.1039/d0ra06173e.
[28] K. Y. Hu, J. A. Wuu, H. C. Kao, Y. T. Liu, and S. H. Pai, "Isolation and characterization of a newly identified type II restriction endonuclease from a local Streptomyces sp. in Taiwan," Applied Biochemistry and Biotechnology, vol. 73, no. 2-3, pp. 231-241, 1998, doi: 10.1007/Bf02785658.
[29] Y. G. Kim, J. Cha, and S. Chandrasegaran, "Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain," Proc Natl Acad Sci U S A, vol. 93, no. 3, pp. 1156-60, 1996, doi: 10.1073/pnas.93.3.1156.
[30] F. D. Urnov, J. C. Miller, Y. L. Lee, C. M. Beausejour, M. J. Rock, S. Augustus, A. C. Jamieson, M. H. Porteus, P. D. Gregory, and M. C. Holmes, "Highly efficient endogenous human gene correction using designed zinc-finger nucleases," Nature, vol. 435, no. 7042, pp. 646-651, 2005, doi: 10.1038/nature03556.
[31] J. P. Guilinger, D. B. Thompson, and D. R. Liu, "Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification," Nat Biotechnol, vol. 32, no. 6, pp. 577-582, 2014, doi: 10.1038/nbt.2909.DOI: https://doi.org/10.34238/tnu-jst.7490
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





