PHƯƠNG PHÁP NEWTON – KRYLOV- NEDZHIBOV GIẢI HỆ PHƯƠNG TRÌNH PHI TUYẾN VỚI TỐC ĐỘ HỘI TỤ BẬC BỐN
Thông tin bài báo
Ngày nhận bài: 22/03/23                Ngày hoàn thiện: 05/05/23                Ngày đăng: 05/05/23Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] M. Drexler, “Newton method as a global solver for non-linear problems,” Ph.D. Thesis, University of Oxford, 1997.
[2] S. Amat, S. Busquier, and J. M. Gutierrez, “Geometric constructions of iterative methods to solve nonlinear equations,” Comp. Appl. Math, vol. 157, pp. 197-205, 2003.
[3] J. M. Gutierrez and M. A. Hernandez, “A family of Chebyshev-Halley type methods in Banach spaces,” Bull. Austral. Math. Soc., vol. 55, pp. 113-130, 1997.
[4] D. K. R. Babajee, M. Z. Dauhoo, M. T. Darvishi, and A. Barati, “A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule,” Appl. Math. Comput., vol. 200, pp. 452–458, 2008.
[5] D. K. R. Babajee and M. Z. Dauhoo, “An analysis of the properties of the variants of Newton’s method with third order convergence,” Appl. Math. Comput., vol. 183, pp. 659-684, 2006.
[6] D. K. R. Babajee and M. Z. Dauhoo, “Analysis of a family of two-point iterative methods with third order convergence,” in International Conference on Numerical Analysis and Applied Mathematics, T. E. Simos, G. Psihoyios, Ch. Tsitouras, (eds.), WILEY-VCH Verlag GmbH & Co.KGaA, Greece, 2006, pp. 658-661.
[7] A. Cordero and J. R. Torregrosa, “Variants of Newton’s method for functions of several variables,” Appl. Math. Comput., vol. 183, pp. 199-208, 2006.
[8] M. T. Darvishi and A. Barati, “A third-order Newton-type method to solve systems of nonlinear equations,” Appl.Math. Comput., vol. 187, pp. 630-635, 2007.
[9] M. T. Darvishi and A. Barati, “Super cubic iterative methods to solve systems of nonlinear equations,” Appl. Math. Comput., vol. 188, pp. 1678-1685, 2007.
[10] G. H. Nedzhibov, “A family of multi-point iterative methods for solving systems of nonlinear equations,” J. Comput. Appl. Math., vol. 222, pp. 244–250, 2008.
[11] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinears, Prentice Hall, Inc., Englewood Cliffs, NJ, 1983.
DOI: https://doi.org/10.34238/tnu-jst.7592
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





