TÍNH CHẤT QUANG VÀ PHÁT QUANG CỦA NANO BaMoO4 ĐỒNG PHA TẠP Eu3+, Mn2+ CHẾ TẠO BẰNG PHƯƠNG PHÁP THỦY NHIỆT
Thông tin bài báo
Ngày nhận bài: 21/04/23                Ngày hoàn thiện: 08/06/23                Ngày đăng: 08/06/23Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] J. C. Sczancoski, L.S. Cavalcante, N.L. Marana, R.O. da Silva, R.L. Tranquilin, M.R. Joya, P.S. Pizani, J. A. Varela, J. R. Sambrano, M. S. Li, E. Longo, and J. Andrés, “Electronic Structure and optical properties of BaMoO4 powders,” Current Applied Physics, vol. 10, pp. 614–624, 2010.
[2] G. Jia, C. Huang, L. Li, C. Wang, X. Song, L. Song, Z. Li, and S. Ding, “Hydrothermal synthesis and luminescence properties of uniform BaMoO4:Ln3+ (Ln = Eu, Tb, Dy, and Sm) microspheres,” Optical Materials, vol. 35, no. 2, pp. 285-291, 2012, doi: 10.1016/j.optmat.2012.08.021.
[3] L. K. Bharat, S. H. Lee, and J. S. Yu, “Synthesis, structural and optical properties of BaMoO4:Eu3+ shuttle like phosphors,” Materials Research Bulletin, vol. 53, pp. 49–53, 2014, doi: 10.1016/j.materresbull. 2014.02.002.
[4] S. Li, L. Yu, J. Sun, and X. Man, “Synthesis and photoluminescent characteristics of Eu3+-doped MMoO4 (M = Sr, Ba) nanophosphors by a hydrothermal method,” Journal of Rare Earths, vol. 35, no. 4, pp. 347-355, 2017, doi: 10.1016/S1002-0721(17)60918-9.
[5] T. Thongtem, S. Kungwankunakorn, B. Kuntalue, A. Phuruangrat, and S. Thongtem, “Luminescence and absorbance of highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles synthesized by co-precipitation method at room temperature,” J. Alloy Compd, vol. 506, no. 1, pp. 475-481, 2010.
[6] M. Ghaed-Amini, M. Bazarganipour, M. Salavati-Niasari, and K. Saberyan, “Morphology and photoluminescence of BaMoO4 micro- and nano-crystals synthesized by coprecipitation method,” Trans. Nonferrous Met. Soc. China, vol. 25, pp. 3967-3973, 2015, doi: 10.1016/S1003-6326(15)64045-6.
[7] C. Shivakumara, R. Saraf, S. Behera, N. Dhananjaya, and H. Nagabhushana, “Synthesis of Eu3+-activated BaMoO4 phosphors and their Judd–Ofelt analysis: Applications in lasers and white LEDs,” Spectrochimica Acta, Part A: Molecular Spectroscopy and Molecular Biology, vol. 151, pp. 141–148, 2015, doi: 10.1016/j.saa.2015.06.045
[8] R. P. Moreira, L. H.C. Francisco, I. F. Costa, H. P. Barbosa, E. E.S. Teotonio, M. C.F.C. Felinto, O. L. Malta, and H. F. Brito, “Luminescence properties of BaMO4:Eu3+ (M: Mo or W) phosphors derived from co-precipitation reaction,” Journal of Alloys and Compounds, vol. 937, 2023, Art. no. 168408, doi: 10.1016/j.jallcom.2022.168408.
[9] M. N. Chu, T. T. Nguyen, H. T. Nguyen, T. B. D. Hoang, and T. H. T. Do, “Synthesize and study structure and luminescence properties of nanoparticles BaMoO4 doped Eu3+ by hydrothermal method,” TNU Journal of Science and Technology, vol. 227, no. 16, 2022, pp. 100 – 106, doi: 10.34238/tnu-jst.6559.
[10] M. N. Chu, L. T. H. Nguyen, X. T. Mai, T. H. Do, T. T. A. Duong, L.T.T. Nguyen, H. V. Pham, M. N. Ha, V. H. Nguyen, H. D. Chau, and T. K. N. Tran, “Temperature affects on the photoluminescence and Judd-Ofelt intensity parameters of CaMoO4:Eu3+ nanophosphor,” Journal of Luminescence, vol. 258, 2023, Art. no. 119776, doi: 10.1016/j.jlumin.2023.119776
[11] S. Sasidharan, G. Jyothi, and K. G. Gopchandran, “Solution combustion synthesis and luminescence dynamics of CaTiO3:Eu3+, Y3+ nanophosphors,” Journal of Luminescence, vol. 235, 2021, Art. no. 118048, doi: 10.1016/j.jlumin.2021.118048.
[12] D. L. Dexter and J. H. Schulman, “Theory of concentration quenching in inorganic phosphors,” J. Chem. Phys., vol. 22, no. 6, pp. 1063–1070, 1954, doi: 10.1063/1.1740265.
[13] K. Sudarshan, S. K. Gupta, K. Sonawane, and R. M. Kadam, “Room temperature synthesis, concentration quenching study and defect formation in β-Ag2MoO4:Dy3+ photoluminescence and positron annihilation spectroscopy,” Journal of Luminescence, vol. 212, pp. 293–299, 2019, doi: 10.1016/j.jlumin.2019.04.031.
[14] Y. Chen, S.-W. Xie, C. Tong, H.-H. Tan, L.-J. Xu, N. Li, and J.-X. Xu, “Preparation of NaYF4:Yb3+, Tm3+@NaGdF4:Ce3+, Eu3+ double-jacket microtubes for dual-mode fluorescent anti-counterfeiting,” Trans. Nonferrous Met. Soc. China, vol. 30, pp. 3333−3346, 2020, doi: 10.1016/S1003-6326(20)65465-6.
[15] B. Devakumar, P. Halappa, and C. Shivakumara, “Dy3+/Eu3+ co-doped CsGd(MoO4)2 phosphor with tunable photoluminescence properties for near-UV WLEDs applications,” Dyes Pigments, vol. 137, pp. 244–255, 2017, doi: 10.1016/j.dyepig.2016.10.016.
[16] M. Sahu, S. K. Gupta, R. M. Kadam, and M. K. Saxena, “Dopant Concentration induced optical changes in Ba1-xEuxMoO4: A green and facile approach towards tunable photoluminescent material,” Journal of Luminescence, vol. 188, pp. 67–74, 2017, doi: 10.1016/j.jlumin.2017.03.063.
[17] C. Bouzidi, M. Ferhi, H. Elhouichet, and M. Ferid, “Spectroscopic properties of rare-earth (Eu3+, Sm3+) doped BaWO4 powders,” Journal of Luminescence, vol. 161, pp. 448-455, 2015, doi: 10.1016/j.jlumin.2015.01.053.
[18] G. Blasse, “Energy transfer in oxidic phosphors,” Phys. Lett. A, vol. 28, pp. 444-445, 1968.
DOI: https://doi.org/10.34238/tnu-jst.7796
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu