TỔNG HỢP CÁC HẠT NANO BẠC BẰNG PHƯƠNG PHÁP XANH SỬ DỤNG CAO CHIẾT LÁ LIỄU CHO CÁC ỨNG DỤNG QUANG XÚC TÁC
Thông tin bài báo
Ngày nhận bài: 04/07/23                Ngày hoàn thiện: 28/07/23                Ngày đăng: 28/07/23Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] A. Naganthran, G. Verasoundarapandian, F. E. Khalid, M. J. Masarudin, A. Zulkharnain, N. M. Nawawi, M. Karim, C. A. C. Abdullah, and S. A. Ahmad, “Synthesis, Characterization and Biomedical Application of Silver Nanoparticles,” Materials, vol. 15, no. 2, Jan. 2022, doi: 10.3390/ma15020427.
[2] C. C. Fernandez, A. R. Sokolonski, M. S. Fonseca, D. Stanisic, D. B. Araújo, V. Azevedo, R. D. Portela, and L. Tasic, “Applications of silver nanoparticles in dentistry: Advances and technological innovation,” International Journal of Molecular Sciences, vol. 22, no. 5. MDPI AG, pp. 1–21, Mar. 01, 2021, doi: 10.3390/ijms22052485.
[3] E. O. Mikhailova, “Silver Nanoparticles: Mechanism of Action and Probable Bio-Application,” Journal of Functional Biomaterials, vol. 11, no. 4. MDPI, Dec. 01, 2020, doi: 10.3390/jfb11040084.
[4] K. Zhang, V. C. H. Lui, Y. Chen, C. N. Lok, and K. K. Y. Wong, “Delayed application of silver nanoparticles reveals the role of early inflammation in burn wound healing,” Sci Rep, vol. 10, no. 1, Dec. 2020, doi: 10.1038/s41598-020-63464-z.
[5] M. Wypij, T. Jędrzejewski, J. Trzcińska-Wencel, M. Ostrowski, M. Rai, and P. Golińska, “Green Synthesized Silver Nanoparticles: Antibacterial and Anticancer Activities, Biocompatibility, and Analyses of Surface-Attached Proteins,” Front Microbiol, vol. 12, Apr. 2021, doi: 10.3389/fmicb.2021.632505.
[6] R. Algotiml, A. Gab-Alla, R. Seoudi, H. H. Abulreesh, M. Z. El-Readi, and K. Elbanna, “Anticancer and antimicrobial activity of biosynthesized Red Sea marine algal silver nanoparticles,” Sci. Rep., vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-06412-3.
[7] M. A. Sofi, S. Sunitha, M. A. Sofi, S. K. K. Pasha, and D. Choi, “An overview of antimicrobial and anticancer potential of silver nanoparticles,” Journal of King Saud University - Science, vol. 34, no. 2. Elsevier B.V., Feb. 01, 2022, doi: 10.1016/j.jksus.2021.101791.
[8] N. S. Alduraihem, R. S. Bhat, S. A. Al-Zahrani, D. M. Elnagar, H. M. Alobaid, and M. H. Daghestani, “Anticancer and Antimicrobial Activity of Silver Nanoparticles Synthesized from Pods of Acacia nilotica,” Processes, vol. 11, no. 2, Feb. 2023, doi: 10.3390/pr11020301.
[9] I. X. Yin, J. Zhang, I. S. Zhao, M. L. Mei, Q. Li, and C. H. Chu, “The antibacterial mechanism of silver nanoparticles and its application in dentistry,” International Journal of Nanomedicine, Dove Medical Press Ltd., vol. 15, pp. 2555–2562, 2020, doi: 10.2147/IJN.S246764.
[10] K. Mukherjee, N. Bhagat, M. Kumari, A. R. Choudhury, B. Sarkar, and B. D. Ghosh, “Insight study on synthesis and antibacterial mechanism of silver nanoparticles prepared from indigenous plant source of Jharkhand,” Journal of Genetic Engineering and Biotechnology, vol. 21, no. 1, Dec. 2023, doi: 10.1186/s43141-023-00463-3.
[11] E. Urnukhsaikhan, B. E. Bold, A. Gunbileg, N. Sukhbaatar, and T. Mishig-Ochir, “Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus,” Sci. Rep., vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-00520-2.
[12] P. Singh and I. Mijakovic, “Antibacterial Effect of Silver Nanoparticles Is Stronger If the Production Host and the Targeted Pathogen Are Closely Related,” Biomedicines, vol. 10, no. 3, Mar. 2022, doi: 10.3390/biomedicines10030628.
[13] J. Du, Z. Hu, W. Dong, Y. Wang, S. Wu, and Y. Bai, “Biosynthesis of large-sized silver nanoparticles using Angelica keiskei extract and its antibacterial activity and mechanisms investigation,” Microchemical Journal, vol. 147, 2019, doi:10.1016/j.microc.2019.03.046
[14] Y. Qing, L. Cheng, R. Li, G. Liu, Y. Zhang, X. Tang, J. Wang, H. Liu, and Y. Qin, “Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies,” International Journal of Nanomedicine, Dove Medical Press Ltd., vol. 13, pp. 3311–3327, Jun. 05, 2018, doi: 10.2147/IJN.S165125.
[15] H. Ghabban, S. F. Alnomasy, H. Almohammed, O. M. Al Idriss, S. Rabea, and Y. Eltahir, “Antibacterial, Cytotoxic, and Cellular Mechanisms of Green Synthesized Silver Nanoparticles against Some Cariogenic Bacteria (Streptococcus mutans and Actinomyces viscosus),” J. Nanomater, vol. 2022, 2022, doi: 10.1155/2022/9721736.
[16] P. Singh and I. Mijakovic, “Strong Antimicrobial Activity of Silver Nanoparticles Obtained by the Green Synthesis in Viridibacillus sp. Extracts,” Front Microbiol, vol. 13, Feb. 2022, doi: 10.3389/fmicb.2022.820048.
[17] C. M. Crisan, T. Mocan, M. Manolea, L. I. Lasca, F. A. Tăbăran, and L. Mocan, “Review on silver nanoparticles as a novel class of antibacterial solutions,” Applied Sciences (Switzerland), vol. 11, no. 3, MDPI AG, pp. 1–18, Feb. 01, 2021, doi: 10.3390/app11031120.
[18] Y. Dong, H. Zhu, Y. Shen, W. Zhang, and L. Zhang, “Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens,” PLoS One, vol. 14, no. 9, Sep. 2019, doi: 10.1371/journal.pone.0222322.
[19] A. Menichetti, A. Mavridi-Printezi, D. Mordini, and M. Montalti, “Effect of Size, Shape and Surface Functionalization on the Antibacterial Activity of Silver Nanoparticles,” Journal of Functional Biomaterials, vol. 14, no. 5, May 01, 2023, doi: 10.3390/jfb14050244.
[20] A. Wasilewska, U. Klekotka, M. Zambrzycka, G. Zambrowski, I. Święcicka, and B. Kalska-Szostko, “Physico-chemical properties and antimicrobial activity of silver nanoparticles fabricated by green synthesis,” Food Chem., vol. 400, Jan. 2023, doi: 10.1016/j.foodchem.2022.133960.
[21] K. Roy, C. K. Sarkar, and C. K. Ghosh, “Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract,” Applied Nanoscience (Switzerland), vol. 5, no. 8, pp. 953–959, Nov. 2015, doi: 10.1007/s13204-014-0392-4.
[22] N. U. H. Altaf, M. Y. Naz, S. Shukrullah, and H. N. Bhatti, “Testing of photocatalytic potential of silver nanoparticles produced through nonthermal plasma reduction reaction and stabilized with saccharides,” Main Group Chemistry, vol. 20, no. 4, pp. 475–488, 2021, doi: 10.3233/MGC-210059.
[23] Madhu, R. Sharma, and R. Bharti, “A Review on the Synthesis and Photocatalytic Application of Silver Nano Particles,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics, 2023, doi: 10.1088/1755-1315/1110/1/012021.
[24] M. Nakhjavani, V. Nikkhah, M. M. Sarafraz, S. Shoja, and M. Sarafraz, “Green synthesis of silver nanoparticles using green tea leaves: Experimental study on the morphological, rheological and antibacterial behaviour,” Heat and Mass Transfer, vol. 53, no. 10, pp. 3201–3209, Oct. 2017, doi: 10.1007/s00231-017-2065-9.
[25] S. Menon, H. Agarwal, S. R. Kumar, and S. V. Kumar, “Green synthesis of silver nanoparticles using medicinal plant Acalypha indica leaf extracts and its application as an antioxidant and antimicrobial agent against foodborne pathogens,” International Journal of Applied Pharmaceutics, vol. 9, no. 5, pp. 42–50, Aug. 2017, doi: 10.22159/ijap.2017v9i5.19464.
[26] A. Panáček, L. Kvítek, R. Prucek, M. Kolář, R.Večeřová, N. Pizúrová, V K. Sharma, T. Nevěčná, and R.k Zbořil, “Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity,” Journal of Physical Chemistry B, vol. 110, no. 33, pp. 16248–16253, Aug. 2006, doi: 10.1021/jp063826h.
[27] R. C. Sandulovici, M.Carmen-Marinela, A. Grigoroiu, C. A. Moldovan, M. Savin, V. Ordeanu, S. N. Voicu, D. Cord, G. M. Costache, and M. L. Galatanu, “The Physicochemical and Antimicrobial Properties of Silver/Gold Nanoparticles Obtained by ‘Green Synthesis’ from Willow Bark and Their Formulations as Potential Innovative Pharmaceutical Substances,” Pharmaceuticals, vol. 16, no. 1, Jan. 2023, doi: 10.3390/ph16010048.
[28] Y. Y. Loo, B. W. Chieng, M. Nishibuchi, and S. Radu, “Synthesis of silver nanoparticles by using tea leaf extract from Camellia Sinensis,” Int. J. Nanomedicine, vol. 7, pp. 4263–4267, 2012, doi: 10.2147/IJN.S33344.
[29] A. Khodabandehloo, A. Rahbar-Kelishami, and H. Shayesteh, “Methylene blue removal using Salix babylonica (Weeping willow) leaves powder as a low-cost biosorbent in batch mode: Kinetic, equilibrium, and thermodynamic studies,” J. Mol. Liq., vol. 244, pp. 540–548, Oct. 2017, doi: 10.1016/j.molliq.2017.08.108.
[30] V. N. Vu, T. H. T. Pham, M. Chanthavong, T. H. Do, T. H. L. Nguyen, Q. D. Nguyen, and T. K. N Tran, “Enhanced photocatalytic degradation of rhodamine-b under led light using CuZnAl hydrotalcite synthesized by co-precipitation technique,” Inorganics, vol. 10, no. 7, 2022, doi: 10.3390/inorganics 10070089.
[31] M. Guilger-Casagrande and R. de Lima, “Synthesis of Silver Nanoparticles Mediated by Fungi: A Review,” Frontiers in Bioengineering and Biotechnology, vol. 7, Oct. 22, 2019, doi: 10.3389/fbioe.2019.00287.
[32] N. V. Reddy, H. Li, T. Hou, M. S. Bethu, Z. Ren, and Z. Zhang, “Phytosynthesis of silver nanoparticles using perilla frutescens leaf extract: Characterization and evaluation of antibacterial, antioxidant, and anticancer activities,” Int. J. Nanomedicine, vol. 16, pp. 15–29, 2021, doi: 10.2147/IJN.S265003.
[33] S. Sarina, E. R. Waclawik, and H. Zhu, “Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation,” Green Chemistry, vol. 15, no. 7, pp. 1814–1833, 2013, doi: 10.1039/c3gc40450a.
DOI: https://doi.org/10.34238/tnu-jst.8275
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu