ẢNH HƯỞNG CỦA ĐỘ MẶN VÀ MÀU SẮC BỂ LÊN SINH TRƯỞNG VÀ TỶ LỆ SỐNG CỦA CÁ NGỰA ĐEN (Hippocampus kuda Bleeker, 1852) GIAI ĐOẠN GIỐNG | Tứ | TNU Journal of Science and Technology

ẢNH HƯỞNG CỦA ĐỘ MẶN VÀ MÀU SẮC BỂ LÊN SINH TRƯỞNG VÀ TỶ LỆ SỐNG CỦA CÁ NGỰA ĐEN (Hippocampus kuda Bleeker, 1852) GIAI ĐOẠN GIỐNG

Thông tin bài báo

Ngày nhận bài: 31/10/23                Ngày hoàn thiện: 05/01/24                Ngày đăng: 03/02/24

Các tác giả

1. Phạm Minh Tứ, Trường Đại học Kiên Giang
2. Vũ Ngọc Út, Trường Đại học Cần Thơ
3. Hồng Mộng Huyền Email to author, Trường Đại học Kiên Giang

Tóm tắt


Cá ngựa đen (Hippocampus kuda Bleeker, 1852) có giá trị về dược phẩm, kinh tế và đa dạng sinh học nên được IUCN (International Union for Conservation of Nature) xếp vào bậc VU (loài sắp nguy cấp). Vì vậy, cá ngựa đen cần được bảo vệ, bảo tồn và phát triển. Nuôi trồng thủy sản là một trong những chiến lược đầy hứa hẹn để phát triển quần thể cá ngựa đen. Nghiên cứu được thực hiện nhằm đánh giá khả năng sinh trưởng của chúng trong điều kiện nuôi nhốt, đây là bước quan trọng trong nỗ lực nhân giống và nuôi trồng đối tượng này. Cá bột 1 ngày tuổi được nuôi trong bể với nhiều màu sắc khác nhau gồm đỏ, đen, xanh dương, trắng và vàng. Hơn nữa, cá con cũng được nuôi ở các độ mặn khác nhau là 15 ppt; 20 ppt, 25 ppt và 30 ppt. Kết quả cho thấy tỷ lệ sống của cá con ở các bể màu tối như đỏ, xanh dương và đen (40 - 41,67%) cao hơn rõ rệt so với bể màu sáng (p<0,05). Mặt khác, cá ngựa đen không có sự khác biệt đáng kể về tỷ lệ sống và tăng trưởng bình thường khi nuôi ở các độ mặn khác nhau, do vậy độ mặn từ 15 ppt đến 30 ppt thích hợp cho việc nuôi cá ngựa đen giống. Kết quả nghiên cứu này có cơ sở khoa học, góp phần chung vào việc thuần hóa và sản xuất cá ngựa đen trong điều kiện nuôi nhốt. Đây cũng là một trong những bước đầu trong việc bảo tồn và phát triển loài này.

Từ khóa


Hippocampus kuda; Cá ngựa đen giống; Độ mặn; Tỷ lệ sống; Màu sắc bể

Toàn văn:

PDF

Tài liệu tham khảo


[1] K. H. Kang, Z. J. Qian, B. Ryu, F. Karadeniz, D. Kim, and S. K. Kim, “Antioxidant peptides from protein hydrolysate of microalgae Navicula incerta and their protective effects in HepG2/CYP2E1 cells induced by ethanol,” Phytotherapy Research, vol. 26, pp. 1555–1563, 2012.

[2] M. Su, T. F. Yu, H. Zhang, Y. Wu, X. Q. Wang, and G. Li, “The anti-apoptosis effect of glycyrrhizate on HepG2 cells induced by hydrogen peroxide,” Oxidative Medicine and Cellular Longevity, 2016, Art. no. 6849758.

[3] B. Ryu, Z. J. Qian, and S. K. Kim, “Purification of a peptide from seahorse, that inhibits TPA-induced MMP, iNOS and COX-2 expression through MAPK and NF-κB activation, and induces human osteoblastic and chondrocytic differentiation,” Chemico-Biological Interactions, vol. 184, pp. 413-422, 2010.

[4] D. D. Sun, S. Q. Wu, C. F. Jing, N. Zhang, D. Liang, and A. L. Xu, “Identification, synthesis and characterization of a novel antimicrobial peptide HKPLP derived from Hippocampus kuda Bleeker,” Journal of Antibiotics, vol. 65, pp. 117-121, 2012.

[5] T. S. Ky, Techniques culture seahorses in Vietnam. Agriculture Publishing House, 2000, p. 59.

[6] S. A. Lourie, J. C. Pritchard, S. P. Casey, T. S. Ky, H. J. Hall, and A. C. J. Vincent, “The taxonomy of Vietnam’s exploited seahorses (family Syngnathidae),” Biological Journal of the Linnean Society, vol. 66, pp. 231-256, 1999.

[7] R. H. Kuiter, “Revision of the Australian seahorses of the genus Hippocampus (Syngnathiformes: Syngnathidae) with descriptions of nine new species,” Records-Australian Museum, vol. 53, no. 3, pp. 293-340, 2001.

[8] L. Tamazouzt, B. Chatain, and P. Fontaine, “Tank wall colour and light level affect growth and survival of Eurasian perch larvae (Perca fluviatilis L.),” Aquaculture, vol. 182, no. 1-2, pp. 85-90, 2000.

[9] J. F. Ullmann, T. Gallagher, N. S. Hart, A. C. Barnes, R. P. Smullen, S. P. Collin, and S. E. Temple, “Tank color increases growth, and alters color preference and spectral sensitivity, in barramundi (Lates calcarifer),” Aquaculture, vol. 322, pp. 235-240, 2011.

[10] C. Shi, J. Wang, K. Peng, C. Mu, Y. Ye, and C. Wang, “The effect of tank colour on background preference, survival and development of larval swimming crab Portunus trituberculatus,Aquaculture, vol. 504, pp. 454-461, 2019.

[11] E. McLean, “Fish tank color: An overview,” Aquaculture, vol. 530, 2021, Art. no. 735750.

[12] F. Paiva, N. C. Pauli, and E. Briski, “Are juveniles as tolerant to salinity stress as adults? A case study of Northern European, Ponto‐Caspian and North American species,” Diversity and Distributions, vol. 26, no. 11, pp. 1627-1641, 2020.

[13] E. Barbieri and S. A. Doi, “Acute toxicity of ammonia on juvenile cobia (Rachycentron canadum, Linnaeus, 1766) according to the salinity,” Aquac. Int., vol. 20, no. 2, pp. 373–382, 2012.

[14] S. J. Foster and A. C. J. Vincent, “Life history and ecology of seahorses: implications for conservation and management,” J. Fish Biol., vol. 65, pp. 1-61, 2004.

[15] H. B. Pawar, “Development and Standardisation of Culture Techniques for Conservation of Yellow Seahorse, Hippocampus Kuda (Bleeker, 1852),” PhD. Thesis Goa University, Taleigao Goa, p. 224, 2014.

[16] L. M. B. Garcia, G. V. Hilomen-Garcia, and R. L. M. Calibara, “Culturing seahorse (Hippocampus barbouri) in illuminated cages with supplementary,” Acetes feeding. Isr. J. Aquacult-Bamidgeh, vol. 62, pp. 122-129, 2010.

[17] S. E. Papoutsoglou, G. Mylonakis, H. Miliou, N. P. Karakatsouli, and S. Chadio, “Effects of background colour on growth performances and physiological responses of scaled carp (Cyprinus carpio L.) reared in a closed circulated system,” Aquacult. Eng., vol. 22, pp. 309-318, 2000.

[18] L. Tamazouzt, B. Chatain, and P. Fontaine, “Tank wall colour and light level affect growth and survival of Eurasian perch larvae (Perca fluvistilis L.),” Aquaculture, vol. 182, pp. 85-90, 2000.

[19] K. Naas, I. Huse, and J. Iglesias, “Illumination in first feeding tanks for marine fish larvae,” Aquacult. Eng., vol. 15, pp. 291-300, 1996.

[20] H. I. Browman and B. M. Marcotte, “Effects of prey color and background color on feeding by Atlantic salmon alevins,” Prog.Fish-Cult., vol. 49, pp. 141-143, 1987.

[21] A. C. J. Vincent, The international trade in seahorses, Oxford, UK: University of Oxford, 1996, p. 159.

[22] S. D. Naik, S. G. Belsare, M. S. Sawant, S. T. Sharangdher, and M. T. Sharangdher, “Maintenance and breeding of seahorses (Hippocampus kuda) in marine aquarium,” Eco. Env. Cons., vol. 8, no. 1, pp. 69-72, 2002.

[23] B. Ignatius and I. Jagadis, “Growth and reproduction of tropical seahorse Hippocampus kuda in captivity,” Indian J. Fish., vol. 50, no. 3, pp. 369-372, 2003.

[24] C. M. C. Woods, “Improving initial survival in cultured seahorses Hippocampus abdominalis Leeson, 1827 (Teleostei:Syngnathidae),” Aquaculture, vol. 190, pp. 377-388, 2000.

[25] S. D. Job, H. H. Do, J. J. Meeuwig, and H. J. Hall, “Culturing the oceanic seahorse, Hippocampus kuda, Aquaculture, vol. 214, pp. 333-341, 2002.

[26] M. K. Anil, V. S. Kakati, U. Ganga, and S. Zacharia, “Larval rearing of seahorse Hippocampus kuda under laboratory conditions,” Mar. Fish. Info. Ser., T & E Ser., vol. 162, pp. 23-25, 1999.

[27] C. C. Tseng, J. H. Chien, T. W. Chu, A. C. Cheng, Y. L. Shiu, T. W. Han, and C. H. Liu, “Effects of food type, temperature and salinity on the growth performance and antioxidant status of the longsnout seahorse, Hippocampus reidi,Aquaculture Research, vol. 51, no. 11, pp. 4793-4804, 2020.

[28] J. Huang, G. Qin, B. Zhang, S. Tan, J. Sun, and Q. Lin, “Effects of food, salinity, and ammonia-nitrogen on the physiology of juvenile seahorse (Hippocampus erectus) in two typical culture models in China,” Aquaculture, vol. 520, 2020, Art. no. 734965.

[29] A. K. Sinha, R. Rasoloniriana, A. F. Dasan, N. Pipralia, R. Blust, and G. D. Boeck, “Interactive effect of high environmental ammonia and nutritional status on ecophysiological performance of european sea bass (Dicentrarchus labrax) acclimated to reduced seawater salinities,” Aquat. Toxicol., vol. 160, pp. 39-56, 2015.

[30] L. Sampaio, W. Wasielesky, and K. C. Miranda-Filho, “Effect of salinity on acute toxicity of ammonia and nitrite to juvenile Mugil platanus,Bull. Environ. Contam. Toxicol., vol. 68, pp. 668–674, 2002.

[31] L. D. F. Costa, K. C. Miranda-Filho, M. P. Severo, and L. A. Sampaio, “Tolerance of juvenile pompano Trachinotus marginatus to acute ammonia and nitrite exposure at different salinity levels,” Aquaculture, vol. 285, pp. 270–272, 2008.




DOI: https://doi.org/10.34238/tnu-jst.9105

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved