ẢNH HƯỞNG ÁP LỰC ÉP ĐẾN CƠ TÍNH CỦA VẬT LIỆU TITAN XỐP ĐƯỢC CHẾ TẠO BẰNG PHƯƠNG PHÁP THIÊU KẾT XUNG ĐIỆN PLASMA
Thông tin bài báo
Ngày nhận bài: 26/02/24                Ngày hoàn thiện: 29/05/24                Ngày đăng: 29/05/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] K. Prasad et al., “Metallic biomaterials: Current challenges and opportunities,” Materials, vol. 10, no. 8, 2017, doi: 10.3390/ma10080884.
[2] M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, and L. Berzina-Cimdina, “Biodegradable materials and metallic implants-A review,” Journal of Functional Biomaterials, vol. 8, no. 4, Sep. 26, 2017, doi: 10.3390/jfb8040044.
[3] Y. F. Zheng, X. N. Gu, and F. Witte, “Biodegradable metals,” Materials Science and Engineering R: Reports, vol. 77, pp. 1–34, 2014, doi: 10.1016/j.mser.2014.01.001.
[4] A. Kumar, Y. Gori, A. Kumar, C. S. Meena, and N. Dutt, Advanced Materials for Biomedical Applications. Boca Raton: CRC Press, 2022, doi: 10.1201/9781003344810.
[5] H. Li, S. M. Oppenheimer, S. I. Stupp, D. C. Dunand, and L. C. Brinson, “Effects of Pore Morphology and Bone Ingrowth on Mechanical Properties of Microporous Titanium as an Orthopaedic Implant Material,” Mater Trans, vol. 45, no. 4, pp. 1124–1131, 2004, doi: 10.2320/matertrans.45.1124.
[6] Z. H. Zhang, Z. F. Liu, J. F. Lu, X. B. Shen, F. C. Wang, and Y. D. Wang, “The sintering mechanism in spark plasma sintering - Proof of the occurrence of spark discharge,” Scr. Mater., vol. 81, pp. 56–59, 2014, doi: 10.1016/j.scriptamat.2014.03.011.
[7] T. Borkar, S. Nag, Y. Ren, J. Tiley, and R. Banerjee, “Reactive spark plasma sintering (SPS) of nitride reinforced titanium alloy composites,” J. Alloys Compd., vol. 617, pp. 933–945, 2014, doi: 10.1016/j.jallcom.2014.08.049.
[8] A. S. Namini, S. N. S. Gogani, M. S. Asl, K. Farhadi, M. G. Kakroudi, and A. Mohammadzadeh, “Microstructural development and mechanical properties of hot pressed SiC reinforced TiB2 based composite,” Int. J. Refract. Metals Hard Mater., vol. 51, pp. 169–179, 2015, doi: 10.1016/j.ijrmhm.2015.03.014.
[9] M. Eriksson, Z. Shen, and M. Nygren, “Fast densification and deformation of titanium powder,” Powder Metallurgy, vol. 48, no. 3, pp. 231–236, 2005, doi: 10.1179/174329005X71939.
[10] M. Zadra, F. Casari, L. Girardini, and A. Molinari, “Microstructure and mechanical properties of cp-titanium produced by spark plasma sintering,” Powder Metallurgy, vol. 51, no. 1, pp. 59–65, 2008, doi: 10.1179/174329008X277000.
[11] R. Chaudhari and R. Bauri, “Reaction mechanism, microstructure and properties of Ti-TiB insitu composite processed by spark plasma sintering,” Materials Science and Engineering: A, vol. 587, pp. 161–167, 2013, doi: 10.1016/j.msea.2013.08.069.
[12] A. S. Namini, M. Azadbeh, and M. S. Asl, “Effect of TiB2 content on the characteristics of spark plasma sintered Ti–TiBw composites,” Advanced Powder Technology, vol. 28, no. 6, pp. 1564–1572, 2017, doi: 10.1016/j.apt.2017.03.028.
[13] M. S. Asl, A. S. Namini, A. Motallebzadeh, and M. Azadbeh, “Effects of sintering temperature on microstructure and mechanical properties of spark plasma sintered titanium,” Mater. Chem. Phys., vol. 203, pp. 266–273, 2018, doi: 10.1016/j.matchemphys.2017.09.069.
[14] N. Lou, B. Zhu, L. Luo, Y. Zhang, and Z. Meng, “Enhancement of In Vitro Bioactivity of One-Step Spark Plasma Sintered Porous Titanium by Alkali-Treatment,” Metals (Basel), vol. 12, no. 12, 2022, doi: 10.3390/met12122004.
[15] I. M. Makena, M. B. Shongwe, R. Machaka, and M. S. Masete, “Effect of spark plasma sintering temperature on the pore characteristics, porosity and compression strength of porous titanium foams,” SN Appl. Sci., vol. 2, no. 4, pp. 1–8, 2020, doi: 10.1007/s42452-020-2258-6.
[16] F. Zhang, E. Otterstein, and E. Burkel, “Spark plasma sintering, microstructures, and mechanical properties of macroporous titanium foams,” Adv. Eng. Mater., vol. 12, no. 9, pp. 863–872, 2010, doi: 10.1002/adem.201000106.
[17] S. G. Huang, K. Vanmeensel, O. V. D. Biest, and J. Vleugels, “Development of ZrO2-WC composites by pulsed electric current sintering,” J. Eur. Ceram. Soc., vol. 27, no. 10, pp. 3269–3275, 2007, doi: 10.1016/j.jeurceramsoc.2006.11.079.
[18] K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, and O. V. D. Biest, “Modelling of the temperature distribution during field assisted sintering,” Acta Mater., vol. 53, no. 16, pp. 4379–4388, 2005, doi: 10.1016/j.actamat.2005.05.042.
DOI: https://doi.org/10.34238/tnu-jst.9789
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu