TỔNG HỢP, ĐẶC TRƯNG VÀ TÍNH CHẤT QUANG XÚC TÁC PHÂN HỦY KHÁNG SINH TRONG NƯỚC BẰNG VẬT LIỆU COMPOZIT ZnO-Fe3O4-CHITOSAN
Thông tin bài báo
Ngày nhận bài: 12/03/24                Ngày hoàn thiện: 10/06/24                Ngày đăng: 11/06/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] P. Kovalakova, L. Cizmas, et al., “Occurrence and toxicity of antibiotics in the aquatic environment: A review,” Chemosphere, vol. 251, p. 126351, 2020.
[2] S. Fekadu, E. Alemayehu, R. Dewil, and B. V. D. Bruggen, “Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge,” Sci. Total Environ., vol. 654, pp. 324–337, 2019.
[3] I. T. Carvalho and L. Santos, “Antibiotics in the aquatic environments: A review of the European scenario,” Environ. Int., vol. 94, pp. 736–757, 2016.
[4] N. D. G. Chau, Z. Sebesvari, F. Renaud, I. Rosendahl, M. Q. Hoang, and W. Amelung, “Occurrence and Dissipation of the Antibiotics Sulfamethoxazole, Sulfadiazine, Trimethoprim, and Enrofloxacin in the Mekong Delta, Vietnam,” PLoS One, vol. 10, no. 7, 2015, Art. no. e0131855.
[5] T. H. Ngo et al., “Occurrence of pharmaceutical and personal care products in Cau River, Vietnam,” Environ. Sci. Pollut. Res., vol. 28, no. 10, pp. 12082–12091, 2021.
[6] H. Q. Anh et al., “Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives,” Sci. Total Environ., vol. 764, p. 142865, 2021.
[7] N. B. Vu, N. Dang, T. K. A. Nguyen, X. K. Le, and P. K. Thai, “Antibiotics in the aquatic environment of Vietnam: Sources, concentrations, risk and control strategy,” Chemosphere, vol. 197, pp. 438–450, 2018.
[8] M. F. Lanjwani, M. Tuzen, M. Y. Khuhawar, and T. A. Saleh, “Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: A review,” Inorg. Chem. Commun., vol. 159, p. 111613, Jan. 2024.
[9] S. Goktas and A. Goktas, “A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review,” J. Alloys Compd., vol. 863, 2021, doi: 10.1016/j.jallcom.2021.158734.
[10] P. S. Bakshi, D. Selvakumar, K. Kadirvelu, and N. S. Kumar, “Chitosan as an environment friendly biomaterial – a review on recent modifications and applications,” Int. J. Biol. Macromol., vol. 150, pp. 1072–1083, 2020.
[11] W. S. W. Ngah, L. C. Teong, and M. A. K. M. Hanafiah, “Adsorption of dyes and heavy metal ions by chitosan composites: A review,” Carbohydr. Polym., vol. 83, no. 4, pp. 1446–1456, 2011.
[12] E. Karaca et al., “Synthesis, characterization and magnetic properties of Fe3O4 doped chitosan polymer,” J. Magn. Magn. Mater., vol. 373, pp. 53–59, 2015.
[13] N. H. Abdullah, K. Shameli, E. C. Abdullah, and L. C. Abdullah, “Solid matrices for fabrication of magnetic iron oxide nanocomposites: Synthesis, properties, and application for the adsorption of heavy metal ions and dyes,” Compos. Part B Eng., vol. 162, pp. 538–568, 2019.
[14] E. Asgari, A. Sheikhmohammadi, and J. Yeganeh, “Application of the Fe3O4-chitosan nano-adsorbent for the adsorption of metronidazole from wastewater: Optimization, kinetic, thermodynamic and equilibrium studies,” Int. J. Biol. Macromol., vol. 164, pp. 694–706, 2020.
[15] N. T. Nguyen, N. T. Nguyen, and V. A. Nguyen, “In Situ Synthesis and Characterization of ZnO/Chitosan Nanocomposite as an Adsorbent for Removal of Congo Red from Aqueous Solution,” Adv. Polym. Technol., vol. 2020, pp. 1–8, 2020.
[16] O. Długosz, K. Szostak, M. Krupiński, and M. Banach, “Synthesis of Fe3O4/ZnO nanoparticles and their application for the photodegradation of anionic and cationic dyes,” Int. J. Environ. Sci. Technol., vol. 18, no. 3, pp. 561–574, 2021.
[17] V. C. Nguyen, N. Lam, G. Nguyen, and Q. H. Pho, “Preparation of magnetic composite based on zinc oxide nanoparticles and chitosan as a photocatalyst for removal of reactive,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 6, pp.1-8, 2015.
[18] T. V. N. Nguyen et al., “Synthesis and photocatalytic activity of ZnO / g-C3N4 materials under visible light,” Vietnam Journal of Catalysis and Adsorption, vol. 10, no. 1S, pp. 18–23, 2021.
[19] A. Kolodziejczak-Radzimska and T. Jesionowski, “Zinc oxide-from synthesis to application: A review,” Materials (Basel)., vol. 7, no. 4, pp. 2833–2881, 2014.
[20] A. Anum et al., “Synthesis of Bi-Metallic-Sulphides/MOF-5@graphene Oxide Nanocomposites for the Removal of Hazardous Moxifloxacin,” Catalysts, vol. 13, no. 6, p. 984, 2023.
[21] Y. Liu et al., “Aminobenzaldehyde convelently modified graphitic carbon nitride photocatalyst through Schiff base reaction: Regulating electronic structure and improving visible-light-driven photocatalytic activity for moxifloxacin degradation,” J. Colloid Interface Sci., vol. 630, pp. 867–878, 2023.
[22] J. Tao et al., “Cellulose nanocrystals/graphene oxide composite for the adsorption and removal of levofloxacin hydrochloride antibiotic from aqueous solution: Nanocomposites adsorb antibiotics,” R. Soc. Open Sci., vol. 7, no. 10, 2020, doi: 10.1098/rsos.200857.
[23] M. H. Al-Jabari et al., “Adsorption study of levofloxacin on reusable magnetic nanoparticles: Kinetics and antibacterial activity,” J. Mol. Liq., vol. 291, p. 111249, 2019.
[24] P. Raizada, A. Sudhaik, and P. Singh, “Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: A review,” Mater. Sci. Energy Technol., vol. 2, no. 3, pp. 509–525, 2019.
DOI: https://doi.org/10.34238/tnu-jst.9877
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu