USING SECOND-ORDER CONE PROGRAMMING-BASED ITERATIVE METHOD FOR LOAD FLOW ANALYSIS IN MESHED POWER TRANSMISSION NETWORKS
About this article
Received: 01/07/24                Revised: 01/08/24                Published: 01/08/24Abstract
Keywords
Full Text:
PDF (Tiếng Việt)References
[1] A. F. Glimn and G. W. Stagg, “Automatic Calculation of Load Flows,” Trans. Am. Inst. Electr. Eng. Part III Power Appar. Syst., vol. 76, no. 3, pp. 817–825, Apr. 1957, doi: 10.1109/AIEEPAS. 1957.4499665.
[2] W. F. Tinney and C. E. Hart, “Power Flow Solution by Newton’s Method,” IEEE Trans. Power Appar. Syst., vol. PAS-86, no. 11, pp. 1449–1460, Oct. 1967, doi: 10.1109/TPAS.1967.291823.
[3] S. C. Tripathy, G. D. Prasad, O. P. Malik, and G. S. Hope, “Load-Flow Solutions for Ill-Conditioned Power Systems by a Newton-Like Method,” IEEE Trans. Power Appar. Syst., vol. PAS-101, no. 10, pp. 3648–3657, Oct. 1982, doi: 10.1109/TPAS.1982.317050.
[4] B. Stott and O. Alsac, “Fast Decoupled Load Flow,” IEEE Trans. Power Appar. Syst., vol. PAS-93, no. 3, pp. 859–869, May 1974, doi: 10.1109/TPAS.1974.293985.
[5] Z. Yang, K. Xie, J. Yu, H. Zhong, N. Zhang, and Q. Xia, “A General Formulation of Linear Power Flow Models: Basic Theory and Error Analysis,” IEEE Trans. Power Syst., vol. 34, no. 2, pp. 1315–1324, Mar. 2019, doi: 10.1109/TPWRS.2018.2871182.
[6] K. Purchala, L. Meeus, D. V. Dommelen, and R. Belmans, “Usefulness of DC power flow for active power flow analysis,” in IEEE Power Engineering Society General Meeting, vol. 1, pp. 454-459, Jun. 2005, doi: 10.1109/PES.2005.1489581.
[7] T. A. Nguyen, M. Q. Dam, and N. V. Pham, “Mixed-integer linear programming-based transmission network expansion planning considering power loss,” TNU J. Sci. Technol., vol. 228, no. 10, pp. 389–397, Jul. 2023, doi: 10.34238/tnu-jst.8196.
[8] S. H. Low, “Convex Relaxation of Optimal Power Flow—Part I: Formulations and Equivalence,” IEEE Trans. Control Netw. Syst., vol. 1, no. 1, pp. 15–27, Mar. 2014, doi: 10.1109/TCNS.2014. 2309732.
[9] B. Cui and X. A. Sun, “A New Voltage Stability-Constrained Optimal Power-Flow Model: Sufficient Condition, SOCP Representation, and Relaxation,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5092–5102, Sep. 2018, doi: 10.1109/TPWRS.2018.2801286.
[10] D. G. Ha, T. Le, and N. V. Pham, “Using second-order cone programming for power flow analysis considering ZIP load model in power distribution systems,” TNU J. Sci. Technol., vol. 228, no. 02, pp. 184–192, Jan. 2023, doi: 10.34238/tnu-jst.6915.
[11] T. T. Nguyen, N. V. Pham, Q. M. Nguyen, and T. H. T. Nguyen, “Optimal size and location of SVC devices considering voltage stability constraints: a mixed-integer nonlinear programming approach,” TNU J. Sci. Technol., vol. 228, no. 14, pp. 3–16, Sep. 2023, doi: 10.34238/tnu-jst.8264.
[12] R. W. Ferrero, S. M. Shahidehpour, and V. C. Ramesh, “Transaction analysis in deregulated power systems using game theory,” IEEE Trans. Power Syst., vol. 12, no. 3, pp. 1340–1347, Aug. 1997, doi: 10.1109/59.630479.
[13] POWERWORLD Corporation, “PowerWorld User’s Manual,” Jul. 11, 2023. [Online]. Available: https://www.powerworld.com/ [Accessed Jan. 30, 2024].
[14] GAMS Development Corp., “GAMS Documentation 46,” Feb. 17, 2024. [Online]. Available: https://www.gams.com. [Accessed Feb. 25, 2024].
DOI: https://doi.org/10.34238/tnu-jst.10686
Refbacks
- There are currently no refbacks.





