ENHANCING 1540 NM LIGHT EMISSION FROM ERBIUM DOPED STRONTIUM SUBSTITUTED HYDROXYAPATITE/BETA-TRICALCIUM PHOSPHATE | Tâm | TNU Journal of Science and Technology

ENHANCING 1540 NM LIGHT EMISSION FROM ERBIUM DOPED STRONTIUM SUBSTITUTED HYDROXYAPATITE/BETA-TRICALCIUM PHOSPHATE

About this article

Received: 05/08/24                Revised: 26/11/24                Published: 27/11/24

Authors

1. Le Thi Tam, Hanoi University of Science and Technology
2. Dao Hong Bach, Hanoi University of Science and Technology
3. Nguyen Duc Trung Kien, Phenikaa University
4. Truong Quoc Phong, Hanoi University of Science and Technology
5. Mai Xuan Dung, Hanoi Pedagogical University 2
6. Truong Nguyen Tuan Minh, Tampere University, Finland
7. Le Tien Ha, TNU - University of Science
8. Pham Hung Vuong Email to author, Hanoi University of Science and Technology

Abstract


This paper presents a method for synthesizing erbium (Er) doped strontium (Sr) substituted hydroxyapatite (HA)/hydroxyapatite/beta-tricalcium phosphate (TCP) nanostructures to achieve strong and stable near-infrared light emission at approximately 1540 nm. The Er-doped Sr-HA/TCP exhibited a rod-like structure by optimizing the concentrations of strontium and erbium and the annealing temperatures. The photoluminescence (PL) intensity of the sample increased with higher Sr and Er concentrations. The PL spectra of the nanoparticles displayed the characteristic luminescence of Er3+ centered at 1540 nm, which was more efficient in the annealed Er- doped Sr-HA/TCP compared to the annealed Er-doped HA/TCP nanoparticles. These findings indicate the potential of using Sr as a sensitizing material for synthesizing of Er-doped Sr-HA/TCP with strong 1540 nm light emission, suitable for applications in waveguide telecommunication and biomedicine.


Keywords


Biomaterials; Luminescence; Hydroxyapatite; Erbium; Nanophosphors

Full Text:

PDF

References


[1] R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 µm emitters based on erbium doped InGaN p-i-n junctions,” Appl. Phys. Lett., vol. 97, pp. 141109-141109-3, 2010, doi: 10.1063/1.3499654.

[2] R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN optical amplifiers operating at 1.54 µm,” Appl. Phys. Lett., vol. 95, pp. 111109-111109-3, 2009, doi: 10.1063/1.3224203.

[3] X. Liu, B. Mei, and G. Tan, “Investigation of the sensitization effect of Yb3+ in Yb, Er co-doped Sr5(PO4)3F transparent ceramics: From single-band red up conversion to temperature sensing behavior,” Journal of the European Ceramic Society, vol. 44, pp. 7855-7866, 2024, doi: 10.1016/j.jeurceramsoc.2024.05.078.

[4] H. Q. Ye, Z. Li, Y. Peng, C. C. Wang, T. Y. Li, Y. X. Zheng, A. Sapelkin, G. Adamopoulos, I. Hernández, P. B. Wyatt, and W. P. Gillin, “Organo-erbium systems for optical amplification at telecommunications wavelengths,” Nature Mater., vol. 13, pp. 382-386, 2014, doi: 10.1038/nmat3910.

[5] O. Savchyn, R. M. Todi, K. R. Coffey, and P. G. Kik, “High-temperature optical properties of sensitized Er3+ in Si-rich SiO2 – implications for gain performance,” Opt. Mater., vol. 32, pp. 1274-1278, 2010, doi: 10.1016/j.optmat.2010.04.037.

[6] B. Garrido, C. García, S. Y. Seo, P. Pellegrino, D. Navarro-Urrios, N. Daldosso, L. Pavesi, F. Gourbilleau, and R. Rizk, “Excitable Er fraction and quenching phenomena in Er-doped SiO2 layers containing Si nanoclusters,” Phys. Rev. B, vol. 76, pp. 245308-245308-15, 2007, doi: 10.1103/PhysRevB.76.245308.

[7] J. C. G. Bünzli and C. Piguet, “Taking advantage of luminescent lanthanide ions,” Chem. Soc. Rev., vol. 34, pp. 1048-1077, 2005, doi: 10.1039/B406082M.

[8] Q. Zhong, H. Wang, G. Qian, Z. Wang, J. Zhang, J. Qiu, and M. Wang, “Novel stoichiometrically erbium− ytterbium cocrystalline complex exhibiting enhanced near-infrared luminescenc,” Inorg. Chem., vol. 45, pp. 4537-4543, 2006, doi: 10.1021/ic051697y.

[9] J. Wu, J. L. Coffer, Y. Wang, and R. Schulze, “Oxidized Germanium as a Broad-Band Sensitizer for Er-Doped SnO2 Nanofibers,” J. Phys. Chem. C, vol. 113, pp. 12-16, 2009, doi: 10.1021/jp8080996.

[10] Z. Xia, H. Liu, X. Li, and C. Liu, “Identification of the crystallographic sites of Eu2+ in Ca9NaMg(PO4)7: structure and luminescence properties study,” Dalton Trans.. vol. 42, pp. 16588-16595, 2013, doi: 10.1039/C3DT52232F.

[11] J. P. Gittings, C. R. Bowen, A. C. E. Dent, I. G. Turner, F. R. Baxter, and J. B. Chaudhuri, “Electrical characterization of hydroxyapatite-based bioceramics,” Acta Biomaterialia, vol. 5, pp. 743-754, 2009, doi: 10.1016/j.actbio.2008.08.012.

[12] L. Stipniece, S. Wilson, J. M. Curran, R. Chen, K. S. Ancane, P. K. Sharma, B. J. Meenan, and A. R. Boyd, “Strontium substituted hydroxyapatite promotes direct primary human osteoblast maturation,” Ceramics International, vol. 47, pp. 3368-3379, 2021, doi: 10.1016/j.ceramint.2020.09.182.

[13] M. S. Collin, A. Sharma, A. Bhattacharya, and S. Sasikumar, “Synthesis of strontium substituted hydroxyapatite by solution combustion route,” Journal of the Indian Chemical Society, vol. 98, p. 100191, 2021, doi: 10.1016/j.jics.2021.100191.

[14] A. M. Dias, and I. D. N. Canhas, C. G. O. Bruziquesi, M. G. Speziali, R. D. Sinisterra, and M. E. Cortés, “Magnesium (Mg2+), Strontium (Sr2+), and Zinc (Zn2+) Co‑substituted Bone Cements Based on Nano‑hydroxyapatite/ Monetite for Bone Regeneration,” Biological Trace Element Research, vol. 201, pp. 2963-2981, 2023, doi: 10.1007/s12011-022-03382-5.

[15]Y. Zhuang, A. Liu, S. Jiang, U. Liaqat, K. Lin, W. Sun, and C. Yuan, “Promoting vascularized bone regeneration via strontium-incorporated hydroxyapatite bioceramic,” Materials & Design, vol. 234, p. 112313, 2023, doi: 10.1016/j.matdes.2023.112313.

[16] C. Zhang, C. Li, S. Huang, Z. Hou, Z. Cheng, P. Yang, C. Peng, and J. Lin, “Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery,” Biomaterials, vol. 31, pp. 3374-3383, 2010, doi: 10.1016/j.biomaterials.2010.01.044.

[17] R. E. Ouenzerfi, N. Kbir-Ariguib, M. Trabelsi-Ayedi, and B. Piriou, “Spectroscopic study of Eu3+ in strontium hydroxyapatite Sr10(PO4)6(OH)2,” J. Lumin., vol. 85, pp. 71-77, 1999, doi: 10.1016/S0022-2313(99)00149-0.

[18] V. H. Pham, H. N. Van, P. D. Tam, and H. N. T. Ha, “A novel 1540 nm light emission from erbium doped hydroxyapatite/β-tricalcium phosphate through co-precipitation method,” Mater. Lett., vol. 167, pp. 145-147, 2016, doi: 10.1. 016/j.matlet.2016.01.002.

[19] B. O. Fowler, E. C. Moreno, and W. E. Brown, “Infra-red spectra of hydroxyapatite, octacalcium phosphate and pyrolysed octacalcium phosphate,” Arch. Oral Bid., vol. 11, pp. 477-492, 1966, doi: 10.1016/0003-9969(66)90154-3.

[20] F. H. Lin, C. J. Liao, K. S. Chen, and J. S. Sun, “Preparation of high-temperature stabilized β-tricalcium phosphate by heating deficient hydroxyapatite with Na4P2O7·10H2O addition,” Biomaterials, vol. 19, pp. 1101-1107, 1998, doi: 10.1016/S0142-9612(98)00040-4.

[21] H. Monma, S. Ueno, and T. Kanazawa, “Properties of hydroxyapatite prepared by the hydrolysis of tricalcium phosphate,” J. Chem. Tech. Biotechnol., vol. 31, pp. 15-24. 1981, doi: 10.1002/jctb.503310105.

[22] A. Mortier, J. Lemaitre, and P. G. Rouxhet, “Temperature-programmed characterization of synthetic calcium-deficient phosphate apatites,” Thermachimia Acta, vol. 143, pp. 265-282, 1989, doi: 10.1016/0040-6031(89)85065-8.

[23] F. R.O. Silva, N. B. Lima, S. N. Guilhen, L. C. Courrol, and A. H. A. Bressiani, “Evaluation of europium-doped HA/β-TCP ratio fluorescence in biphasic calcium phosphate nanocomposites controlled by the pH value during the synthesis,” J. Lumin., vol. 180, pp. 177-182, 2016, doi: 10.1016/j.jlumin.2016.08.030.

[24] C. Rosticher, B. Viana, T. Maldiney, C. Richard, and C. Chanéac, “Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging,” J. Lumin., vol. 170, pp. 460-466, 2016, doi: 10.1016/j.jlumin.2015.07.024.

[25] S. Ogo, A. Onda, Y. Iwasa, K. Hara, A. Fukuoka, and K. Yanagisawa, “1-Butanol synthesis from ethanol over strontium phosphate hydroxyapatite catalysts with various Sr/P ratios,” J. Catalysis, vol. 296, pp. 24-30, 2012, doi: 10.1016/j.jcat.2012.08.019.

[26] J. Wu and J. L. Coffer, “Emissive erbium-doped silicon and germanium oxide nanofibers derived from an electrospinning process,” Chem. Mater., vol. 19, pp. 6266-6276, 2007, doi: 10.1021/cm702226x.

[27] H. Hayash, N. Sugimoto, S. Tanabe, and S. Ohara, “Effect of hydroxyl groups on erbium-doped bismuth-oxide-based glasses for fiber amplifiers,” J. Appl. Phys., vol. 99, pp. 093105-093105-8, 2006, doi: 10.1063/1.2192267.

[28] X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non- Cryst. Solids, vol. 281, pp. 48-54, 2001, doi: 10.1016/S0022-3093(00)00429-4.

[29] P. K. Sekhar, A. R. Wilkinson, R. G. Elliman, T.H. Kim, and S. Bhansali, “Erbium emission from nanoengineered silicon surface,” J. Phys. Chem. C, vol. 112, pp. 20110-20113, 2008, doi: 10.1021/jp808462j

[30] Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett., vol. 71, pp. 2922-2924, 1997, doi: 10.1063/1.120216.




DOI: https://doi.org/10.34238/tnu-jst.10869

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved