EFFECT OF Eu3+ ION DOPING CONCENTRATION ON THE STRUCTURE AND OPTICAL PROPERTIES OF LSTO FLUORESCENT POWDERS PREPARED BY SOLID-STATE REACTION METHOD | Xuân | TNU Journal of Science and Technology

EFFECT OF Eu3+ ION DOPING CONCENTRATION ON THE STRUCTURE AND OPTICAL PROPERTIES OF LSTO FLUORESCENT POWDERS PREPARED BY SOLID-STATE REACTION METHOD

About this article

Received: 24/10/24                Revised: 26/11/24                Published: 26/11/24

Authors

1. Tran Quoc Xuan, Dong Thanh High School
2. Le Thi Phuong, Dong Trieu High School
3. Tran Thi Thu Trang Email to author, Ha Long University
4. Le Tien Ha, TNU - University of Sciences

Abstract


LSTO fluorescent powder doped with Eu3+ ions with 1 to 6% concentrations by solid-state reaction method at 1200 oC. The obtained material is a multiphase structure with main phases La2SrTiO6, SrTiO3 and La2O3, with an average size from 3 to 4 µm, with the structure almost independent of Eu doping concentration. The obtained material strongly absorbs in the ultraviolet and visible regions with characteristic absorption peaks of LSTO substrate material with CTB band at 288 nm and fluorescence excitation peaks of Eu3+ ions at positions 361, 375, 384, 395, 402, 414, 465, 474, 526 and 536 nm. The material gives the best emission when excited at 395 nm, corresponding to the energy level transition of Eu3+ ion from the ground state 7F0 to the state 5L6. When excited at 395 nm, the fluorescent powder emits strongly in the red-orange region, with an emission band from 575 to 725 nm, this emission band is the state transition of Eu3+ ion from 5D0 to 7Fj (j = 0, 1, 2, 3, 4). The phenomenon of fluorescence quenching due to the concentration of the material system is observed at 5% Eu. The obtained fluorescent powder has potential applications in improving the quality of WLEDs when using nUV-LED chips with an emission wavelength of 395 nm.

Keywords


La2SrTiO6; Perovskite; Fluorescent materials; Eu-doped fluorescent materials; ion Eu3+

References


[1] M. T. Tran et al., “Excellent thermal stability and high quantum efficiency orange-red-emitting AlPO4:Eu3+ phosphors for WLED application,” J. Alloys Compd., vol. 853, 2021, Art. no. 156941, doi: 10.1016/j.jallcom.2020.156941.

[2] V.Q. Nguyen et al., “A high quantum efficiency plant growth LED by using a deep-red-emitting α-Al2O3:Cr3+ phosphor,” Dalt. Trans., vol. 50, no. 36, pp. 12570-12582, 2021, doi: 10.1039/d1dt00115a.

[3] Y. Zhang, L. Luo, G. Chen, Y. Liu, R. Liu, and X. Chen, “Green and red phosphor for LED backlight in wide color gamut LCD,” J. Rare Earths, vol. 38, no. 1, pp. 1-12, 2020, doi: 10.1016/j.jre.2019.10.005.

[4] K. Li and C. Shen, “White LED based on nano-YAG:Ce3+/YAG:Ce3+,Gd3+ hybrid phosphors,” Optik (Stuttg)., vol. 123, no. 7, pp. 621-623, 2012, doi: 10.1016/j.ijleo.2011.06.005.

[5] K. Li and C. Shen, “White light LED based on YAG:Ce3+ and YAG:Ce3+ ,Gd3+ phosphor,” 5th Int. Symp. Adv. Opt. Manuf. Test. Technol. Optoelectron. Mater. Devices Detect. Imager, Display, Energy Convers. Technol., 2010, doi: 10.1117/12.865938.

[6] Y. Liu, M. Zhang, Y. Nie, J. Zhang, and J. Wang, “Growth of YAG:Ce3+ Al2O3 eutectic ceramic by HDS method and its application for white LEDs,” J. Eur. Ceram. Soc., vol. 37, no. 15, pp. 4931-4937, 2017, doi: 10.1016/j.jeurceramsoc.2017.06.014.

[7] A. Potdevin, G. Chadeyron, D. Boyer, and R. Mahiou, “Sol-gel based YAG:Ce3+ powders for applications in LED devices,” Phys. Status Solidi Curr. Top. Solid State Phys., vol. 4, no. 1, pp. 65-69, 2007, doi: 10.1002/pssc.200673550.

[8] Y. Zhang, L. Li, X. Zhang, And Q. Xi, “Temperature effects on photoluminescence of YAG:Ce3+ phosphor and performance in white light-emitting diodes,” J. Rare Earths, vol. 26, no. 3, pp. 446-449, 2008, doi: 10.1016/S1002-0721(08)60115-5.

[9] Y. Takeda, H. Kato, M. Kobayashi, H. Kobayashi, and M. Kakihana, “Photoluminescence properties of Mn4+-activated perovskite-type titanates, La2MTiO6:Mn4+ (M = Mg and Zn),” Chemistry Letters, vol. 44, no. 11, 2015, doi: 10.1246/cl.150748.

[10] C. J. Howard, P. W. Barnes, B. J. Kennedy, and P. M. Woodward, “Structures of the ordered double perovskites Sr2YTaO6 and Sr2YNbO6,” Acta Crystallogr. Sect. B Struct. Sci., vol. 61, no. 3, pp. 258-262, Jun. 2005, doi: 10.1107/S0108768105012395.

[11] L. Xi, Y. Pan, X. Chen, S. Huang, and M. Wu, “Optimized photoluminescence of red phosphor Na2SnF6:Mn4+ as red phosphor in the application in ‘warm’ white LEDs,” J. Am. Ceram. Soc., vol. 100, no. 5, 2017, doi: 10.1111/jace.14708.

[12] Q. Sun et al., “Double perovskite Ca2LuTaO6:Eu3+ red-emitting phosphors: Synthesis, structure and photoluminescence characteristics,” J. Alloys Compd., vol. 804, pp. 230-236, Oct. 2019, doi: 10.1016/j.jallcom.2019.06.260.

[13] A. Fu et al., “A novel double perovskite La2ZnTiO6:Eu3+ red phosphor for solid-state lighting: Synthesis and optimum luminescence,” Opt. Laser Technol., vol. 96, pp. 43-49, 2017, doi: 10.1016/j.optlastec.2017.04.025.

[14] B. Bondzior, D. Stefańska, T. H. Q. VU, N. Miniajluk-Gaweł, and P. J. Dereń, “Red luminescence with controlled rise time in La2MgTiO6:Eu3+,” J. Alloys Compd., vol. 852, 2021, doi: 10.1016/j.jallcom.2020.157074.

[15] B. Su, H. Xie, Y. Tan, Y. Zhao, Q. Yang, and S. Zhang, “Luminescent properties, energy transfer, and thermal stability of double perovskites La2MgTiO6:Sm3+, Eu3+,” J. Lumin., vol. 204, pp. 457-463, 2018, doi: 10.1016/j.jlumin.2018.08.013.

[16] H. Yuan, Z. Huang, L. Xu, H. Jia, X. Sun, and K. Liu, “La2MgTiO6:Bi3+/Mn4+ photoluminescence materials: Molten salt preparation, Bi3+→Mn4+ energy transfer and thermostability,” J. Lumin., vol. 224, April 2020, Art. no. 117290, doi: 10.1016/j.jlumin.2020.117290.

[17] Z. Yang et al., “Studies on luminescence properties of double perovskite deep red phosphor La2ZnTiO6:Mn4+ for indoor plant growth LED applications,” J. Alloys Compd., vol. 802, pp. 628–635, Sep. 2019, doi: 10.1016/j.jallcom.2019.06.199.

[18] Y. W. Seo, D. Kim, W. Ran, S. H. Park, B. C. Choi, and J. H. Jeong, “Luminescence properties and energy transfer of Mn4+-doped double perovskite La2ZnTiO6 phosphor,” Opt. Mater. (Amst)., vol. 106, May 2020, Art. no. 109980, doi: 10.1016/j.optmat.2020.109980.

[19] M. Hu, C. Liao, L. Xia, W. You, and Z. Li, “Low temperature synthesis and photoluminescence properties of Mn4+ -doped La2MgTiO6 deep-red phosphor with a LiCl flux,” J. Lumin., vol. 211, pp. 114-120, March 2019, doi: 10.1016/j.jlumin.2019.03.034.

[20] J. Ou, X. Yang, and S. Xiao, “Luminescence performance of Cr3+ doped and Cr3+, Mn4+ co-doped La2ZnTiO6 phosphors,” Mater. Res. Bull., vol. 124, 2020, Art. no. 110764, doi: 10.1016/j.materresbull.2019.110764.

[21] K. Li, H. Lian, R. Van Deun, and M. G. Brik, “A far-red-emitting NaMgLaTeO6:Mn4+ phosphor with perovskite structure for indoor plant growth,” Dye. Pigment., vol. 162, pp. 214-221, Mar. 2019, doi: 10.1016/j.dyepig.2018.09.084.

[22] C. Wei, D. Xu, J. Li, A. Geng, X. Li, and J. Sun, “Synthesis and luminescence properties of Eu3+ doped a novel double perovskite Sr2YTaO6 phosphor,” J. Mater. Sci. Mater. Electron., vol. 30, no. 3, pp. 2864-2871, Feb. 2019, doi: 10.1007/s10854-018-0563-2.

[23] J. Huang et al., “La2MgTiO6:Eu2+/TiO2-based composite for methyl orange (MO) decomposition,” Appl. Phys. A Mater. Sci. Process., vol. 125, no. 12, 2019, doi: 10.1007/s00339-019-3147-y.

[24] K. Singh, M. I. U. Haq, and S. Mohan, “Synergism of h-BN and La2O3 in improving the tribological performance of Al2O3 coatings,” Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2024, doi: 10.1177/13506501241272777.

[25] W. Ismail, A. Belal, W. Abdo, and A. El-Shaer, “Investigating the physical and electrical properties of La2O3 via annealing of La(OH)3,” Sci. Rep., vol. 14, no. 1, pp. 1-12, 2024, doi: 10.1038/s41598-024-57848-8.

[26] S. Bakshi, S. Rani, and P. Kaur, “Down conversions luminescent properties of Eu doped SrTiO3,” J. Phys. Conf. Ser., vol. 2267, no. 1, 2022, doi: 10.1088/1742-6596/2267/1/012042.

[27] M. Qin et al., “Response to comment on ‘point defect structure of La-doped SrTiO3 ceramics with colossal permittivity,’” Scr. Mater., vol. 190, pp. 118-120, 2021, doi: 10.1016/j.scriptamat. 2020.08.037.

[28] A. Rocca, A. Licciulli, M. Politi, and D. Diso, “ Rare Earth-Doped SrTiO3 Perovskite Formation from Xerogels,” ISRN Ceram., vol. 2012, pp. 1-6, 2012, doi: 10.5402/2012/926537.

[29] X. Yin, J. Yao, Y. Wang, C. Zhao, and F. Huang, “Novel red phosphor of double perovskite compound La2MgTiO6:xEu3+,” J. Lumin., vol. 132, no. 7, pp. 1701-1704, 2012, doi: 10.1016/j.jlumin.2012.02.006.




DOI: https://doi.org/10.34238/tnu-jst.11395

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved