FLEXIBLE BROADBAND METAMATERIAL ABSORBER BASED ON MULTILAYER STRUCTURE IN GHz FREQUENCY RANGE | Chi | TNU Journal of Science and Technology

FLEXIBLE BROADBAND METAMATERIAL ABSORBER BASED ON MULTILAYER STRUCTURE IN GHz FREQUENCY RANGE

About this article

Received: 26/10/24                Revised: 29/11/24                Published: 30/11/24

Authors

1. Do Thuy Chi, TNU - University of Education
2. Duong Thi Ha, TNU - University of Education
3. Bui Xuan Khuyen, 1) Institute of Materials Science - Vietnam Academy of Science and Technology, 2) Graduate University of Science and Technology - Vietnam Academy of Science and Technology
4. Bui Son Tung Email to author, Graduate University of Science and Technology - Vietnam Academy of Science and Technology
5. Ngo Nhu Viet, Graduate University of Science and Technology - Vietnam Academy of Science and Technology
6. Vu Thi Hong Hanh, TNU - University of Education
7. Vu Dinh Lam, Graduate University of Science and Technology - Vietnam Academy of Science and Technology

Abstract


In this work, we propose a flexible, broadband metamaterial absorber using a multilayer structure. Each layer of the proposed metamaterial absorber is designed to consist of simple resonant structures made from graphene conductive ink placed on a flexible polyimide dielectric layer. These two structural layers are stacked to form a multilayer structure. Simulation results show that in the flat state, the material absorbs over 90% of the incident electromagnetic waves in the frequency range from about 4.6 to 12.7 GHz, equivalent to a fractional bandwidth of 93.6%. In the case of bending state, the absorption spectrum is extended to a fractional bandwidth of 116.5%, from 4.26 to 16.14 GHz with a bending radius of 100 mm. The broadband absorption mechanism of the material is clarified by the impedance matching theory and electromagnetic energy distribution.

Keywords


Metamaterial absorber; Multilayer metamaterial absorber; Broadband metamaterial absorber; Flexible metamaterial; GHz region

References


[1] R. A. Shelby, D. R. Smith, and S. Shultz, "Experimental Verification of a Negative Index of Refraction," Science, vol. 292, no. 5514, pp. 77-79, 2001.

[2] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science, vol. 305, pp. 788-792, 2014.

[3] Z. Duan, X. Tang, Z. Wang, Y. Zhang, X. Chen, M. Chen, and Y. Gong, “Observation of the reversed Cherenkov radiation,” Nat. Commun., vol. 8, no. 1, 2017, Art. no. 14901.

[4] N. Seddon and T. Bearpark, “Observation of the Inverse Doppler Effect,” Science, vol. 302, no. 5650, pp. 1537-1540, 2003.

[5] L. Zhu and L. Dong, “Electromagnetically induced transparency metamaterials: theories, designs and applications,” J. Phys. D: Appl. Phys., vol. 55, no. 26, 2022, Art. no. 263003.

[6] V. G. Veselago, “The electrodynamics of sbstances with simultaneously negative values of and ,” Sov. Phys. Uspekhi, vol. 10, no. 4, pp. 509-514, 1968.

[7] M. R. Islam, M. T. Islam, B. Bais, S. H. Almalki, H. Alsaif, and M. S. Islam, “Metamaterial sensor based on rectangular enclosed adjacent triple circle split ring resonator with good quality factor for microwave sensing application,” Sci. Rep., vol. 12, no. 1, 2022, Art. no. 6792.

[8] L. Ma, D. Chen, W. Zheng, J. Li, S. Zahra, Y. Liu, Y. Zhou, Y. Huang, and G. Wen, “Advanced Electromagnetic Metamaterials for Temperature Sensing Applications,” Front. Phys., vol. 9, 2021, Art. no. 657790.

[9] K. N. Olan-Nuñez, and R. S. Murphy-Arteaga, “A novel metamaterial-based antenna for on-chip applications for the 72.5–81 GHz frequency range,” Sci. Rep., vol. 12. no. 1, 2022, Art. no. 1699.

[10] Z. Huang and B. Wang, “Ultra-broadband metamaterial absorber for capturing solar energy from visible to near infrared,” Surfaces and Interfaces, vol. 33, 2022, Art. no. 102244.

[11] T. H. H. Le, H. N. Bui, S. T. Bui, D. L. Vu, X. K. Bui, and T. S. Pham, “Enhanced efficiency of magnetic resonant wireless power transfer system using rollable and foldable metasurface based on polyimide substrate,” Appl. Phys. A, vol. 130, no. 7, 2024, Art. no. 521.

[12] X. K. Bui, V. N. Nguyen, N. D. Dinh, P. H. Nguyen, T. T. Nguyen, S. T. Bui, D. L. Vu, T. G. Ho, D. T. Pham and Y. Lee, “Dual-band infrared metamaterial perfect absorber for narrow-band thermal emitters,” J. Phys. D: Appl. Phys., vol. 57, no. 28, 2024, Art. no. 285501.

[13] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett., vol. 100, no. 20, 2008, Art. no. 207402.

[14] W. Zuo, Y. Yang, X. He, D. Zhan, and Q. Zhang, “A miniaturized metamaterial absorber for ultrahigh-frequency RFID system,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 329-332, 2016.

[15] J. Mizeraczyk and M. Budnarowska, “Microwave Metamaterial Absorber with Radio Frequency/Direct Current Converter for Electromagnetic Harvesting System,” Electronics, vol. 13, no. 5, Art. no. 833, 2024.

[16] Z. Luo, S. Ji, J. Zhao, H. Wu, and H. Dai, “A multiband metamaterial absorber for GHz and THz simultaneously,” Results Phys., vol. 30, 2021, Art. no. 104893.

[17] H. Sudarsan, K. Mahendran, and S. Rathika, “Design of microwave metamaterial absorber for Ku-, X, and C-band applications,” Results Opt., vol. 15, 2024, Art. no. 100653.

[18] Y. Zhou, Z. Qin, Z. Liang, D. Meng, H. Xu, D. R. Smith, and Y. Liu, “Ultra-broadband metamaterial absorbers from long to very long infrared regime,” Light Sci. Appl., vol. 10, no. 1, 2021, Art. no. 138.

[19] P. Li, P. Zhou, Y. Liu, and X. Wang, “Electrically switchable metamaterial absorber in visible range based on micro-electro-mechanically system,” Results Phys., vol. 51, 2023, Art. no. 106569.

[20] X. K. Bui, N. V. Ngo, T. S. Pham, H. N. Bui, H. A. Nguyen, T. C. Do, P. H. Nguyen, S. T. Bui, D. L. Vu, H. Zheng, L. Y. Chen, and Y. Lee, “Multi-Layered Metamaterial Absorber Electromagnetic and Thermal Characterization,” Photonics, vol. 11, no. 3, 2024, Art. no. 11030219.

[21] G. Deng, K. Lv, H. Sun, Y. Hong, X. Zhang, Z. Yin, Y. Li, and J. Yang, “An ultra-wideband, polarization insensitive metamaterial absorber based on multiple resistive film layers with wide-incident-angle stability,” Int. J. Microw. Wirel. Technol., vol. 13, no. 1, pp. 1-9, 2020.

[22] K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express, vol. 20, pp. 635-643, 2012.

[23] A. Sadeqi, H. R. Nejad, and S. Sonkusale, “Low-cost metamaterial-on-paper chemical sensor,” Opt. Express, vol. 25, pp. 16092-16100, 2017.

[24] W. Xin, Z. Binzhen, W. Wanjun, W. Junlin, and D. Junping, “Design, fabrication, and characterization of a flexible dual-band metamaterial absorber,” IEEE Photonics J., vol. 9, pp. 1-12, 2017.

[25] G. Dayal, and S. A. J. Ramakrishna, “High temperature VO2 based microbolometer with enhanced light absorption,” Phys. D Appl. Phys., vol. 48, 2014, Art. no. 035105.

[26] H. K. Kim, K. Ling, K. Kim, and S. Lim, “Flexible inkjet-printed metamaterial absorber for coating a cylindrical object,” Opt. Express, vol. 23, pp. 5898-5906, 2015.

[27] CST Studio Suite. [CD-ROM]. Vélizy-Villacoublay, 78140, France: Dassault Systèmes, 2023.

[28] C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley and Sons: Hoboken, NJ, USA, 1989.

[29] S. D. Assimonis and V. Fusco, “Polarization insensitive, wide-angle, ultra-wideband, flexible, resistively loaded, electromagnetic metamaterial absorber using conventional inkjet-printing technology,” Sci. Rep., vol. 9, no. 1, 2019, Art. no. 12334.

[30] V. L. Le, S. K. Nguyen, S. T. Bui, T. T. Nguyen, T. G. Trinh, T. S. Pham, X. K. Bui, D. L. Vu, L. Chen, H. Zheng, and Y. Lee, “Flexible broadband metamaterial perfect absorber based on graphene-conductive inks,” Photonics, vol. 8, no. 10, 2021, Art. no. 440.




DOI: https://doi.org/10.34238/tnu-jst.11409

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved