EXPLORING SPECIES DIVERSITY AND FUNCTIONAL GENES IN NATURAL HONEY FROM SON LA, VIETNAM USING METAGENOMIC APPROACH | Nam | TNU Journal of Science and Technology

EXPLORING SPECIES DIVERSITY AND FUNCTIONAL GENES IN NATURAL HONEY FROM SON LA, VIETNAM USING METAGENOMIC APPROACH

About this article

Received: 10/01/25                Revised: 31/03/25                Published: 31/03/25

Authors

1. Nguyen Hoang Nam Email to author, Hanoi National University of Education
2. Pham Minh Duc, Hanoi National University of Education
3. Kim Thi Phuong Oanh, Viện Sinh học - Viện Hàn lâm Khoa học và Công nghệ Việt Nam
4. Tran Thi Thuy, Hanoi National University of Education

Abstract


Honey is a widely consumed food and a habitat for diverse microorganisms. In this paper, we employed the metagenomics approach to investigate the species composition and genetic make-up of natural honey from Moc Chau, Yen Chau and Quynh Nhai districts, Son La province in Vietnam, where is favorable for honey production. The results revealed that honey contains DNA from various microorganisms, notably the bacterium Apilactobacillus kunkeei and the yeast Zygosaccharomyces rouxii. Observable differences in microbial composition among 06 honey samples have been noted, suggesting that metagenomics could be applied to trace honey’s geographic and biological origins. The gene function profiles of microorganisms in honey indicate diverse metabolic activities and biological processes, with similar functional gene compositions across samples. The functional group "Defense Mechanisms" accounts for an average of 2.94±0.13%, reflecting microbial adaptations to the harsh environment of honey through efflux pump systems. Genes associated with “Secondary compound metabolism” average 1.52±0.43%, demonstrating that honey is a source of bioactive compounds. This study provides a honey metagenomic data resource for exploring novel microorganisms and genes in Vietnamese honey.

Keywords


Honey; Metagenomics; Species composition; Gene function; Vietnam

Full Text:

PDF

References


[1] P. M. Da Silva, C. Gauche, L. V. Gonzaga, A. C. O. Costa, and R. Fett, “Honey: Chemical composition, stability and authenticity,” Food Chemistry, vol. 196, pp. 309-323, 2016.

[2] H. Abuelgasim, C. Albury, and J. Lee, “Effectiveness of honey for symptomatic relief in upper respiratory tract infections: a systematic review and meta-analysis,” BMJ Evidence-Based Medicine, vol. 26, no. 2, pp. 57-64, 2021.

[3] Z. N. François, M. F. G. Perin, and K. P. Marie, “Antimicrobial activity of probiotic strain Lactobacillus plantarum isolated from ‘sha’a’ and assessment of its viability in local honey,” Journal of Microbiology, Biotechnology and Food Sciences, vol. 2021, no. 10, pp. 226-231, 2021.

[4] H. K. Wirta, M. Bahram, K. Miller, T. Roslin, and E. Vesterinen, “Reconstructing the ecosystem context of a species: Honey-borne DNA reveals the roles of the honeybee,” PLOS One, vol. 17, no. 7, 2022, Art. no. e0268250.

[5] S. Bovo, V. J. Utzeri, A. Ribani, R. Cabbri, and L. Fontanesi, “Shotgun sequencing of honey DNA can describe honey bee derived environmental signatures and the honey bee hologenome complexity,” Sci. Rep., vol. 10, no. 1, 2020, Art. no. 1.

[6] S. Bovo, A. Ribani, V. J. Utzeri, G. Schiavo, F. Bertolini, and L. Fontanesi, “Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature,” PLOS One, vol. 13, no. 10, 2018, Art. no. e0205575.

[7] A. Galanis, P. Vardakas, M. Reczko, V. Harokopos, P. Hatzis, E. M. C. Skoulakis, G. A. Pavlopoulos, and S. Patalano, “Bee foraging preferences, microbiota and pathogens revealed by direct shotgun metagenomics of honey,” Molecular Ecology Resources, vol. 22, no. 7, pp. 2506-2523, 2022.

[8] T. L. Pham, T. T. D. Bui, T. T. Ha, T. H. Nguyen, M. S. Yoo, Y. S. Cho, and V. Q. Dong, “The gut microbiota at different developmental stages of Apis cerana reveals potential probiotic bacteria for improving honeybee health,” Microorganisms, vol. 10, no. 10, 2022, Art. no. 10.

[9] C. Billington, J. M. Kingsbury, and L. Rivas, “Metagenomics approaches for improving food safety: A review,” Journal of Food Protection, vol. 85, no. 3, pp. 448-464, 2021.

[10] M. H. Bui, T. T. Tran, H. N. Nguyen, and T. T. H. Le, “Species composition and nest distribution of natural honey bee (Hymenoptera: Apidae) in the mountainous area of Northwest, Vietnam,” TNU Journal of Science and Technology, vol. 229, no. 01, pp. 198-203, 2023.

[11] F. E. Buytaers, A. Saltykova, W. Mattheus, B. Verhaegen, N. H. C. Roosens, K. Vanneste, V. Laisnez, N. Hammami, B. Pochet, V. Cantaert, K. Marchal, S. Denayer, and S. C. J. De Keersmaecker, “Application of a strain-level shotgun metagenomics approach on food samples: resolution of the source of a Salmonella food-borne outbreak,” Microb. Genom., vol. 7, no. 4, 2021, Art. no. 000547.

[12] T. N. T. Nguyen, N. T. Nguyen, D. T. Tran, P.-C. Kuo, B. T. Nguyen, N. T. Le, H. T. Le, H. D. T. Nguyen, D. C. Vu, T. L. Ho, N. A. Le, and T. T. T. Nguyen, “Chemical composition analysis and antioxidant activity of Coffea robusta monofloral honeys from Vietnam,” Foods, vol. 11, no. 3, 2022, Art. no. 3.

[13] N. Q. Pham, H. B. Luu, T. T. Vu, and T. T. Q. Cung, “Comparison of antibacterial activities of some kinds of honey in Vietnam,” Vietnam Journal of Food Control, vol. 5, no. 1, pp. 77-88, 2022.

[14] S. Andrews, “FastQC: A quality control tool for high throughput sequence data,” 2022. [Online]. Available: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. [Accessed: August 24, 2023]

[15] A. M. Bolger, M. Lohse, and B. Usadel, “Trimmomatic: a flexible trimmer for Illumina sequence data,” Bioinformatics, vol. 30, no. 15, pp. 2114-2120, 2014.

[16] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with Bowtie 2,” Nat Methods, vol. 9, no. 4, 2012, Art. no. 4.

[17] D. E. Wood, J. Lu, and B. Langmead, “Improved metagenomic analysis with Kraken 2,” Genome Biol, vol. 20, no. 1, Art. no. 257, 2019.

[18] D. Li, C. M. Liu, R. Luo, K. Sadakane, and T. W. Lam, “MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph,” Bioinformatics, vol. 31, no. 10, pp. 1674-1676, 2015.

[19] J. Lu, F. P. Breitwieser, P. Thielen, and S. L. Salzberg, “Bracken: estimating species abundance in metagenomics data,” PeerJ Computer Science, vol. 3, 2017, Art. no. e104.

[20] A. Mikheenko, V. Saveliev, and A. Gurevich, “MetaQUAST: evaluation of metagenome assemblies,” Bioinformatics, vol. 32, no. 7, pp. 1088-1090, 2016.

[21] D. Hyatt, G.-L. Chen, P. F. LoCascio, M. L. Land, F. W. Larimer, and L. J. Hauser, “Prodigal: prokaryotic gene recognition and translation initiation site identification,” BMC Bioinformatics, vol. 11, no. 1, 2010, Art. no. 119.

[22] J. C. Sequeira, M. Rocha, M. M. Alves, and A. F. Salvador, “UPIMAPI, reCOGnizer and KEGGCharter: Bioinformatics tools for functional annotation and visualization of (meta)-omics datasets,” Computational and Structural Biotechnology Journal, vol. 20, pp. 1798-1810, 2022.

[23] S. Liu, D. Lang, G. Meng, J. Hu, M. Tang, and X. Zhou, “Tracing the origin of honey products based on metagenomics and machine learning,” Food Chemistry, vol. 371, 2022, Art. no. 131066.

[24] H. K. Wirta, N. Abrego, K. Miller, T. Roslin, and E. Vesterinen, “DNA traces the origin of honey by identifying plants, bacteria and fungi,” Sci. Rep., vol. 11, no. 1, 2021, Art. no. 1.

[25] S. Ullah, F. Huyop, R. A. Wahab, I. G. A. Sujana, N. S. Antara, and I. B. W. Gunam, “Using pollen DNA metabarcoding to trace the geographical and botanical origin of honey from Karangasem, Indonesia,” Heliyon, vol. 10, no. 12, 2024, Art. no. e33094.

[26] J. Crovadore, R. Chablais, F. Raffini, B. Cochard, M. Hänzi, F. Gérard, K. K. Jensen, and F. Lefort, “Draft genome sequences of 3 strains of Apilactobacillus kunkeei isolated from the bee gut microbial community,” Microbiology Resource Announcements, vol. 10, no. 13, 2021, Art. no. e00088-21.

[27] A. Endo, S. Maeno, Y. Tanizawa, W. Kneifel, M. Arita, L. Dicks, and S. Salminen, “Fructophilic lactic acid bacteria, a unique group of fructose-fermenting microbes,” Appl. Environ. Microbiol., vol. 84, no. 19, 2018, Art. no. e01290-18.

[28] T. C. Olofsson and A. Vásquez, “Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera,” Curr. Microbiol., vol. 57, no. 4, pp. 356-363, 2008.

[29] S. Bovo, A. Ribani, V. J. Utzeri, G. Schiavo, F. Bertolini, and L. Fontanesi, “Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature,” PLOS One, vol. 13, no. 10, 2018, Art. no. e0205575.

[30] C. Hou, B. Li, Y. Luo, S. Deng, and Q. Diao, “First detection of Apis mellifera filamentous virus in Apis cerana cerana in China,” Journal of Invertebrate Pathology, vol. 138, pp. 112-115, 2016.

[31] U. Hartmann, E. Forsgren, J.-D. Charrière, P. Neumann, and L. Gauthier, “Dynamics of Apis mellifera filamentous virus (AmFV) infections in honey bees and relationships with other parasites,” Viruses, vol. 7, no. 5, 2015, Art. no. 5.

[32] P. Engel and N. A. Moran, “Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis,” Gut. Microbes, vol. 4, no. 1, pp. 60-65, 2013.




DOI: https://doi.org/10.34238/tnu-jst.11854

Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved