HYBRID QUANTUM NEURAL NETWORK AND APPLICATION IN WRITTEN IMAGE RECOGNITION
About this article
Received: 21/04/25                Revised: 26/06/25                Published: 28/06/25Abstract
Keywords
Full Text:
PDF (Tiếng Việt)References
[1] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” Bull. Math. Biophys., vol. 5, pp. 115–133, 1943, doi: 10.1007/BF02478259.
[2] R. Dastres and M. Soori, “Artificial neural network systems,” Int. J. Imag. Robot., vol. 21, no. 2, pp. 13–25, 2021.
[3] M. Baek et al., “Accurate prediction of protein structures and interactions using a three-track neural network,” Science, vol. 373, no. 6557, pp. 871–876, 2021, doi:10.1126/science.abj8754.
[4] J. Jumper et al., “Highly accurate protein structure prediction with AlphaFold,” Nature, vol. 596, no. 7873, pp. 583–589, 2021.
[5] D. T. Jones and J. M. Thornton, “The impact of AlphaFold2 one year on,” Nat. Methods, vol. 19, pp. 11–26, 2022.
[6] F. S. Zariquiey, R. Galvelis, E. Gallicchio, J. D. Chodera, T. E. Markland, and G. de Fabritiis, “Enhancing protein-ligand binding affinity predictions using neural network potentials,” arXiv preprint arXiv:2401.00002, 2024.
[7] J. L. Watson et al., “De novo design of protein structure and function with RFdiffusion,” Nature, vol. 620, no. 7976, pp. 1089–1100, 2023.
[8] N. Q. K. Le, V. N. Nguyen, T. T. Nguyen, T. X. Tran, and T. T. Ho, “Enhancing protein sequence classification with a fuzzy neural network: A study in anticancer peptide identification,” in Proc. 2024 Int. Conf. Fuzzy Theory Appl. (iFUZZY), Aug. 2024, pp. 1–6.
[9] N. J. Ogbuke, Y. Y. Yusuf, K. Dharma, and B. Mercangoz, “Big data supply chain analytics: Ethical, privacy and security challenges posed to business, industries and society,” Prod. Plan. Control, vol. 33, no. 2–3, pp. 123–137, 2022, doi: 10.1080/09537287.2020.1810764.
[10] M. A. Shafique, A. Munir, and I. Latif, “Quantum computing: Circuits, algorithms, and applications,” IEEE Access, vol. 12, pp. 22296–22314, 2024.
[11] H. Padmanaban, “Quantum computing and AI in the cloud,” J. Comput. Intell. Robot., vol. 4, no. 1, pp. 14–32, 2024.
[12] Y. Kwak, W. J. Yun, S. Jung, and J. Kim, “Quantum neural networks: Concepts, applications, and challenges,” in Proc. 12th Int. Conf. Ubiquitous Future Netw. (ICUFN), Aug. 2021, pp. 413–416.
[13] S. Wu, Y. Zhang, and J. Li, “Quantum data parallelism in quantum neural networks,” Phys. Rev. Res., vol. 7, no. 1, 2025, Art. no. 013177.
[14] P. N. Nguyen, “Biomarker discovery with quantum neural networks: A case-study in CTLA4-activation pathways,” BMC Bioinformatics, vol. 25, no. 1, 2024, Art. no. 149.
[15] M. Kashif, A. Marchisio, and M. Shafique, “Computational advantage in hybrid quantum neural networks: Myth or reality?,” arXiv preprint arXiv:2412.04991, 2024.
[16] M. A. Hafeez, A. Munir, and H. Ullah, “H-QNN: A hybrid quantum–classical neural network for improved binary image classification,” AI, vol. 5, no. 3, pp. 1462–1481, 2024.
[17] R. Agarwal, “Complete Guide to the Adam Optimization Algorithm,” Built In, 2023. [Online]. Available: https://builtin.com/machine-learning/adam-optimization. [Accessed March 7, 2025].
[18] Ultralytics, “MNIST Dataset,” 2023. [Online]. Available: https://docs.ultralytics.com/datasets/classify/mnist/#key-features. [Accessed Mar. 20, 2025].
[19] V. M. Truong and M. C. Nguyen, “Quantum hybrid neural network structure,” (in Vietnamese), 2024. [Online]. Available: https://drive.google.com/drive/folders/1Sh7O87q22BCZL9cdmPFjW9 fdurk2u7Ng?usp=sharing. [Accessed Jan 8, 2025].
[20] N. Ketkar and M. Masko, Deep Learning with PyTorch: A Practical Approach to Building Neural Network Models Using PyTorch. Apress, 2019.
[21] S. Patel, “A-Z handwritten alphabets in CSV format,” *Kaggle*, 2020. [Online]. Available: https://www.kaggle.com/datasets/sachinpatel21/az-handwritten-alphabets-in-csv-format. [Accessed Jan 19, 2025].
DOI: https://doi.org/10.34238/tnu-jst.12645
Refbacks
- There are currently no refbacks.