PHOTOCATALYTIC DEGRADATION OF CIPROFLOXACIN AND METRONIDAZOLE ANTIBIOTICS USING ZnO/Fe3O4/CHITOSAN COMPOSITE
About this article
Received: 28/07/25                Revised: 24/09/25                Published: 24/09/25Abstract
Keywords
Full Text:
PDF (Tiếng Việt)References
[1] X. Jiang, K. Li, Y. Tang, X. Wang, W. Kan, L. Yang, and B. Zhao, “A double defects-dominated flexible TiO2 matrix for in-situ SERS sensing of antibiotic residues in aquatic ecosystem (fish & fishpond water) and their on-site degradation in flowing water,” Sci. Total Environ., vol. 921, 2024, Art. no. 171154, doi: 10.1016/j.scitotenv.2024.171154.
[2] D. T. Nguyen, T. K. Hoang, T. D. Tran, M. H. Nguyen, K. T. Trinh, D. A. Khuong, T. Tsubota, and T. D. Pham, “Adsorption characteristics of individual and binary mixture of ciprofloxacin antibiotic and lead(II) on synthesized bamboo-biochar,” Environ. Res., vol. 273, 2025, Art. no. 121225, doi: 10.1016/j.envres.2025.121225.
[3] R. Wu, Y. Wang, X. Song, and H. Zhang, “Fabrication of Fe3O4/HAP/Ag as surface-enhanced Raman scattering substrate for detection of antibiotic residues in fish and aquatic ecosystems,” Opt. Mater. (Amst)., vol. 166, 2025, Art. no. 117209, doi: 10.1016/j.optmat.2025.117209.
[4] K. Kulik, A. Lenart-Boroń, and K. Wyrzykowska, “Impact of Antibiotic Pollution on the Bacterial Population within Surface Water with Special Focus on Mountain Rivers,” Water, vol. 15, no. 5, Mar. 2023, Art. no. 975, doi: 10.3390/w15050975.
[5] T. V. Tran, D. T. C. Nguyen, H. T. N. Le, D. V. N. Vo, V. D. Doan, V. P. Dinh, H. T. T. Nguyen, T. D. Nguyen, and L. G. Bach, “Amino-functionalized MIL-88B(Fe)-based porous carbon for enhanced adsorption toward ciprofloxacin pharmaceutical from aquatic solutions,” Comptes Rendus Chim., vol. 22, no. 11–12, pp. 804–812, 2019, doi: 10.1016/j.crci.2019.09.003.
[6] N. Mohammadian, T. T. Firozjaee, J. Abdi, M. Moghadasi, and M. Mirzaei, “PW12/Fe3O4/biochar nanocomposite as an efficient adsorbent for metronidazole removal from aqueous solution: Synthesis and optimization,” Surfaces and Interfaces, vol. 52, 2024, Art. no. 104946, doi: 10.1016/j.surfin.2024. 104946.
[7] H. Q. Anh, T. P. Q. Le, N. D. Le, X. X. Lu, T. T. Duong, J. Garnier, E. Rochelle-Newall, S. Zhang, N.-H. Oh, C. Oeurng, C. Ekkawatpanit, T.D. Nguyen, Q.T. Nguyen, T.D. Nguyen, T.N. Nguyen, T.L. Tran, T. Kunisue, R. Tanoue, S. Takahashi, T. B. Minh, H. T. Le, T. N. M. Pham, and T. A. H. Nguyen, “Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives,” Sci. Total Environ., vol. 764, Apr. 2021, Art. no. 142865, doi: 10.1016/j.scitotenv.2020.142865.
[8] J. Dutta and A. A. Mala, “Removal of antibiotic from the water environment by the adsorption technologies: A review,” Water Sci. Technol., vol. 82, no. 3, pp. 401–426, Aug. 2020, doi: 10.2166/WST.2020.335.
[9] M. F. Lanjwani, M. Tuzen, M. Y. Khuhawar, and T. A. Saleh, “Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: A review,” Inorg. Chem. Commun., vol. 159, Jan. 2024, Art. no. 111613, doi: 10.1016/j.inoche.2023.111613.
[10] N. Bhattacharjee, I. Som, R. Saha, and S. Mondal, “A critical review on novel eco-friendly green approach to synthesize zinc oxide nanoparticles for photocatalytic degradation of water pollutants,” Int. J. Environ. Anal. Chem., vol. 104, no. 3, pp. 489–516, Jan. 2022, doi: 10.1080/03067319. 2021.2022130.
[11] M. Q. Bui and T. L. Nguyen, “Synthesis, characteristics, and photocatalytic degradation of antibiotics in water using ZnO/Fe3O4/chitosan composite” TNU J. Sci. Technol., vol. 229, no. 10, pp. 150–158, Jun. 2024, doi: 10.34238/tnu-jst.9877.
[12] B. M. Quy, N. T. N. Thu, V. T. Xuan, N. T. H. Hoa, N. T. N. Linh, V. Q. Tung, V. T. T. Le, T. T. Thao, N. T. K. Ngan, P. T. Tho, N. M. Hung, and L. T. Ha, “Photocatalytic degradation performance of a chitosan/ZnO–Fe3O4 nanocomposite over cationic and anionic dyes under visible-light irradiation,” RSC Adv., vol. 15, no. 3, pp. 1590–1603, 2025, doi: 10.1039/D4RA08262A.
[13] S. Akter, M. S. Islam, M. H. Kabir, M. A. A. Shaikh, and M. A. Gafur, “UV/TiO2 photodegradation of metronidazole, ciprofloxacin and sulfamethoxazole in aqueous solution: An optimization and kinetic study,” Arab. J. Chem., vol. 15, no. 7, 2022, Art. no. 103900, doi: 10.1016/j.arabjc.2022.103900.
[14] M. Malakootian, N. Olama, M. Malakootian, and A. Nasiri, “Photocatalytic degradation of metronidazole from aquatic solution by TiO2-doped Fe3+ nano-photocatalyst,” Int. J. Environ. Sci. Technol., vol. 16, no. 8, pp. 4275–4284, 2019, doi: 10.1007/s13762-018-1836-2.
[15] A. H. Jawad, N. S. A. Mubarak, and A. S. Abdulhameed, “Tunable Schiff’s base-cross-linked chitosan composite for the removal of reactive red 120 dye: Adsorption and mechanism study,” Int. J. Biol. Macromol., vol. 142, pp. 732–741, Jan. 2020, doi: 10.1016/j.ijbiomac.2019.10.014.
[16] S. A. Zeid and Y. Leprince-Wang, “Advancements in ZnO-Based Photocatalysts for Water Treatment: A Comprehensive Review,” Crystals, vol. 14, no. 7, pp. 1-47, 2024, doi: 10.3390/cryst14070611.
[17] J. Singh, S. Kaur, G. Kaur, S. Basu, and M. Rawat, “Biogenic ZnO nanoparticles: A study of blueshift of optical band gap and photocatalytic degradation of reactive yellow 186 dye under direct sunlight,” Green Process. Synth., vol. 8, no. 1, pp. 272–280, 2019, doi: 10.1515/gps-2018-0084.
[18] P. Vijayalakshmi, P. Shanmugavelan, S. Anisree, and P. M. Mareeswaran, “Enhanced visible-light Z-scheme photocatalytic degradation of amoxicillin, chlorpyrifos, and methylene blue by Bi2O3/g-C3N4/ZnO nanocomposite,” J. Mater. Res., vol. 39, no. 22, pp. 3103–3125, Nov. 2024, doi: 10.1557/s43578-024-01445-y.
[19] M. Yeganeh, H. R. Sobhi, and A. Esrafili, “Efficient photocatalytic degradation of metronidazole from aqueous solutions using Co/g-C3N4/Fe3O4 nanocomposite under visible light irradiation,” Environ. Sci. Pollut. Res., vol. 29, no. 17, pp. 25486–25495, Apr. 2022, doi: 10.1007/s11356-021-17077-2.
[20] F. Wang, Z. Chen, Z. Zhu, and J. Guo, “Construction of visible light responsive ZnO/N-g-C3N4 composite membranes for antibiotics degradation,” J. Mater. Res. Technol., vol. 17, pp. 1696–1706, 2022, doi: 10.1016/j.jmrt.2022.01.140.
[21] Y. Li, S. Sun, M. Ma, Y. Ouyang, and W. Yan, “Kinetic study and model of the photocatalytic degradation of rhodamine B (RhB) by a TiO2-coated activated carbon catalyst: Effects of initial RhB content, light intensity and TiO2 content in the catalyst,” Chem. Eng. J., vol. 142, no. 2, pp. 147–155, 2008, doi: 10.1016/j.cej.2008.01.009.
[22] M. H. Sayadi, S. Sobhani, and H. Shekari, “Photocatalytic degradation of azithromycin using GO@Fe3O4/ZnO/SnO2 nanocomposites,” J. Clean. Prod., vol. 232, pp. 127–136, Sep. 2019, doi: 10.1016/j.jclepro.2019.05.338.
[23] A. Panchakeaw, S. Nonthing, R. Dulyasucharit, and S. Nanan, “Improved photocatalytic activity of magnetically separable Fe3O4/ZnO photocatalyst for complete sunlight-active removal of tetracycline antibiotic,” Chem. Phys. Lett., vol. 862, Mar. 2025, Art. no. 141868, doi: 10.1016/j.cplett.2025.141868.
DOI: https://doi.org/10.34238/tnu-jst.13319
Refbacks
- There are currently no refbacks.





