GRIFFITHS PHASE AND PREDICTION OF MAGNETOCALORIC EFFECT IN La0.78Ca0.22MnO3 NANOPARICLES
About this article
Received: 20/05/19                Revised: 25/09/19                Published: 03/10/19Abstract
Griffith phase and the magnetocaloric effect in La0.78Ca0.22MnO3 nanoparticles have been studied in detail. The magnetic entropy change and the magnetization-related change of the specific heat were calculated using the phenomenological model from the temperature dependence of magnetization M(T) data of the sample. The maximum magnetic entropy change () was found to be 0,95 J/kg.K for H = 12 kOe, making this material a suitable candidate for magnetic refrigeration applications. A master curve of the magnetic entropy change confirmed the second order of the magnetic phase transition. The appearance of Griffith phase enhances the magnetocaloric effect in the sample.
Keywords
Full Text:
PDF (Tiếng Việt)References
[1]. A. J. Millis, P. B. Littlewood, B. I. Shraiman, “Double exchange alone does not explain the resistivity of La1−xSrxMnO3“, Phys. Rev. Lett., Vol. 74, pp. 5144-5147, 1995.
[2]. Dagotto E. (ed), Nanoscale Phase Separation and Colossal Magnetoresistance, Berlin: Springer, 1995.
[3]. M. Uehara, S. Mori, C. H Chen, S-. W. Cheong, “Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites”, Nature, Vol. 399, pp. 560-563, 1999.
[4]. J. M. De Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A. del Moral, Z. Arnold, “Evidence for magnetic polarons in the magnetoresistive perovskites”, Nature, Vol. 386, pp. 256-259, 1997.
[5]. J. Burgy, M. Mayr, V. Martin-Mayor, A. Moreo, E. Dagotto, “Colossal effects in transition metal oxides caused by intrinsic inhomogeneities”, Phys. Rev. Lett., Vol. 87 pp. 277202 (4 pages), 2001.
[6]. A. J. Millis, “Cooperative Jahn-Teller effect and electron-phonon coupling in La1-xAxMnO3”, Phys. Rev. B, Vol. 53, pp. 8434-8441, 1996.
[7]. M. B. Salamon, P. Lin, S. H. Chun, “Colossal Magnetoresistance is a Griffiths Singularity”, Phys. Rev. Lett., Vol. 88, pp. 197203 (4 pages), 2002.
[8]. R. B. Griffiths, “Nonanalytic behavior above the critical point in a random Ising ferromagnet“, Phys. Rev. Lett., Vol. 23, pp.17-19, 1969.
[9]. J. Deisenhofer, D. Braak, H. A. Krug von Nidda, J. Hemberger, R. M. Eremina, V. A. Ivanshin, A. M. Balbashow, G. Jug, A. Loidl, T. Kimura, Y. Tokura, “Observation of a Griffiths Phase in Paramagnetic La1-xSrxMnO3”, Phys. Rev. Lett., Vol. 95, pp. 257202 (4 pages), 2005.
[10]. W. J. Jiang, X. Z. Zhou, G. Williams, Y. Mukovskii, R. Privezentsev, “The evolution of Griffiths-phase-like features and colossal magnetoresistance in sulator boundary”, J. Phys.: Condens. Matter., Vol. 21, pp. 415603(15 pages), 2009.
[11]. Y. Ying, T. W. Eom, N. V. Dai, Y. P. Lee, “Magnetic properties and Griffiths singularity in La0.45Sr0.55Mn1−xCoxO3”, J. Magn. Magn. Mater., 323, pp. 94–100, 2011.
[12]. W. J. Jiang, X. Z. Zhou, G. Williams, Y. Mukovskii, K. Glazyrin, “Griffiths phase and critical behavior in single-crystal La0.7Ba0.3MnO3: Phase diagram for La1−xBaxMnO3x < 0.33”, Phys. Rev. B, Vol. 77, pp. 064424 (7 pages), 2008.
[13]. P. Tong, B. Kim, D. Kwon, T. Qian, S. I. Lee, S. W. Cheong, B. G. Kim, “Griffiths phase and thermomagnetic irreversibility behavior in slightly electron-dopedmanganites Sm1−xCaxMnO3(0.80 ≤ x ≤ 0.92)”, Phys. Rev. B, Vol. 77, pp. 184432 (6 pages), 2008.
[14]. S. M. Yusuf, J. M. De Teresa, C. Ritter, D. Serrate, M. R. Ibarra, J. V. Yakhmi, V. C. Sahni, “Possible quantum critical point in (La1−xDyx)0.7Ca0.3MnO3”, Phys. Rev. B, Vol. 74, pp. 144427(6 pages), 2006.
[15] A. K. Pramanik, A. Benerjee, “Griffiths phase and its evolution with Mn-site disorder in the half-doped manganite Pr0.5Sr0.5Mn1−yGayO3 (y = 0.0, 0.025, and 0.05)”, Phys. Rev. B, Vol. 81, pp. 024431 (5 pages), 2010.
[16]. J. Y. Fan, L. Pi, Y. He, L. S. Ling, J. X. Dai, Y. H. Zhang, “Griffiths phase and magnetic polaronic behavior in B-site
disordering manganites”, J. Appl. Phys., Vol. 101, pp. 123910 (6 pages), 2007.
[17]. Vijaylakshmi Dayal, Punith Kumar V., R. L. Hadimani, D. C. Jiles, “Evolution of Griffith’s phase in La0.4Bi0.6Mn1-xTixO3 perovskite oxide”, J. Appl. Phys., Vol. 115, pp.17E111 (3 pages), 2014.
[18]. E. Rozenberg, “Comment on “Local structure, magnetization and Griffiths phase of self-doped La1−xMnO3+δ manganites””, J. Alloys Compds., Vol. 602, pp. 40-41, 2014.
[19]. V. Markovich, R. Puzniak, I. Fita, A. Wisniewski, D. Mogilyansky, B. Dolgin, G. Gorodetsky, G. Jung, “Irreversibility, remanence, and Griffiths phase in Sm0.1Ca0.9MnO3 nanoparticles”, J. Appl. Phys., Vol. 113, pp. 233911(8 pages), 2013.
[20]. C. L. Lu, K. F. Wang, S. Dong, J. G. Wan, J. -M. Liu, Z. F. Ren, “Specific heat anomalies and possible Griffiths-like phase in La0.4Ca0.6MnO3 nanoparticles”, J. Appl. Phys., Vol. 103, pp. 07F714 (3 pages), 2008.
[21]. M. Pękała, J. Szydłowska, K. Pękała, V. Drozd, “Griffiths like phase in nanocrystalline manganite La0.50Ca0.50MnO3 studied by magnetic susceptibility and electron spin resonance”, J. Alloys Compds, Vol. 685, pp. 237-241, 2016.
[22]. P. T. Phong, L. T. T. Ngan, N. V. Dang, L. H. Nguyen, P. H. Nam, D. M. Thuy, N. D. Tuan, L. V. Bau, I. J. Lee, “Griffiths-like phase, critical behavior near the paramagnetic-ferromagnetic phase transition and magnetic entropy change of nanocrystalline La0.75Ca0.25MnO3”, J. Magn. Magn. Mater., Vol. 449, pp. 558-566, 2018.
[23]. P. T. Phong, L. T. T. Ngan, L. V. Bau, N. X. Phuc, P. H. Nam, L. T. H. Phong, N. V. Dang, I. J. Lee, “Magnetic field dependence of Griffiths phase and critical behavior in La0.8Ca0.2MnO3 nanoparticles”, J. Magn. Magn. Mater., Vol. 475, pp. 374-381, 2018.
[24]. S. Zhou, Y. Guo, J. Zhao, L. He, L. Shi, ”Size-Induced Griffiths Phase and Second-Order Ferromagnetic Transition in Sm0.5Sr0.5MnO3 Nanoparticles”, J. Phys. Chem. C, Vol. 115, pp. 1535-1540, 2011.
[25]. M. –H. Phan, S. C. Yu, “Review of the magnetocaloric effect in manganite materials, J. Magn. Magn. Mater., Vol. 308, pp. 325-340, 2007.
[26] P. Sarkar, P. Mandal, P. Choudhury, “Large magnetocaloric effect in Sm0.52Sr0.48MnO3 in low magnetic field”, Appl. Phys. Lett., Vol. 92, pp. 182506 (3 pages), 2008.
[27]. S. B. Tian, M. -H. Phan, S. C. Yu, N. H. Hur, “Magnetocaloric effect in a La0.7Ca0.3MnO3 single crystal”, Physica B, Vol. 327, pp. 221-224, 2003.
[28]. Z. M. Wang, G. Ni, Q.Y. Xu, H. Sang, Y. W. Du, “Magnetocaloric effect in perovskite manganites La0.7-xNdxCa0.3MnO3 and La0.7Ca0.3MnO3”, J. Appl. Phys., Vol. 90, pp. 5689-5691, 2001.
[29]. L. Si, Y. L. Chang, J. Ding, C. K. Ong, B. Yao, “Large magnetic entropy changein Nd2/3Sr1/3MnO3”, Appl. Phys. A, Vol. 77, pp. 641-643, 2003.
[30]. M. A. Hamad, “Prediction of thermomagnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3”, Phase Trans., Vol. 85, pp. 106-112, 2012.
[31]. P. T. Phong, N. V. Dang, P. H. Nam, L. T. H. Phong, D. H. Manh, N.M. An, I.-J. Lee, “Prediction of magnetocaloric effect in La0.8 SrxCa0.2-xMnO3 compounds (x = 0.05, 0.1 and 0.15) with a first-order magnetic phase transition”, J. Alloys Compds, Vol. 683, pp. 67-75, 2016.
[32]. Z. B. Guo, Y. W. Du, J. S. Zhu, H. Huang, W. P. Ding, D. Feng, “Large magnetic entropy change in perovskite-type manganese oxides” Phys. Rev. Lett., Vol. 78, pp. 1142-1145, 1997.
[33]. Franco et al., “Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change” Appl. Phys. Lett, vol. 89, pp. 222512, 2006.Refbacks
- There are currently no refbacks.





