DEVELOPMENT NH3 GAS SENSORS AT ROOM TEMPERATURE BASED ON CNT/WO3 NANOBRICK COMPOSITE | Trường | TNU Journal of Science and Technology

DEVELOPMENT NH3 GAS SENSORS AT ROOM TEMPERATURE BASED ON CNT/WO3 NANOBRICK COMPOSITE

About this article

Received: 26/08/19                Revised: 25/10/19                Published: 07/11/19

Authors

1. Duong Vu Truong Email to author, Hanoi University of Industry, Hanoi, Vietnam
2. Nguyen Cong Tu, School of Engineering Physics, Hanoi University of Science and Technology, Hanoi, Vietnam
3. Luong Huu Bac, School of Engineering Physics, Hanoi University of Science and Technology, Hanoi, Vietnam
4. Nguyen Duc Chien, School of Engineering Physics, Hanoi University of Science and Technology, Hanoi, Vietnam
5. Nguyen Huu Lam, School of Engineering Physics, Hanoi University of Science and Technology, Hanoi, Vietnam

Abstract


Incorporation of carbon nanotubes (CNTs) with WO3 metal oxides nanoparticles would improve NH3 gas sensing properties. In this work, CNTs was incorporated into tungsten oxide (WO3) nanoparticles using simple ultrasonication method. The morphology of CNTs/ WO3 composites were observed with field-emission scanning electron microscopy (FE-SEM). The CNTs/ WO3 nanocomposite showed good sensing response towards NH3 at 60 ppm, and more remarkably at room temperature. The enhanced sensing properties might be attributed to the formation of heterojunction and synergistic effect between CNTs and WO3.


Keywords


gas sensor; carbon nanotubes; WO3 ; nano composite; NH3

References


[1]. Hieu N. V., Quang V. V., Hoa N. D., and Kim D, “Preparing large-scale WO3 nanowire-like structure for high sensitivity NH3 gas sensor through a simple route”, Current Applied Physics, 11, pp. 657-661, 2011.

[2]. Tong P. V., Hoa N. D., Duy N. V., Le D. T. T., and Hieu N. V., “Enhancement of gas-sensing characteristics of hydrothermally synthesized WO3 nanorods by surface decoration with Pd nanoparticles”, Sensors and Actuators B: Chemical, 223, pp. 453-460, 2016.

[3]. Li J., Liu X., Cui J., and Sun J., “Hydrothermal Synthesis of Self-Assembled Hierarchical Tungsten Oxides Hollow Spheres and Their Gas Sensing Properties”, ACS Applied Materials & Interfaces, 7, pp. 10108-10114, 2015.

[4]. A. Gurlo, “Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies”, Nanoscale, 3, pp. 154-165, 2011.

[5]. Nguyen L. H., Phi T. V., Phan P. Q., Vu H. N., Nguyen-Duc C., and Fossard F., “Synthesis of multi-walled carbon nanotubes for NH3 gas detection”, Physica E: Low-dimensional Systems and Nanostructures, 37, pp. 54-57, 2007.

[6]. Truong Duong Vu, Tu Nguyen Cong, Bac Luong Huu, Chien Nguyen Duc, and Lam Nguyen Huu, “Surface-Modified Carbon Nanotubes for Enhanced Ammonia Gas Sensitivity at Room Temperature”, Journal of Nanoscience and Nanotechnology, 19, pp. 7447-7451, 2019.

[7]. Alexander G. Bannov, Ondřej Jašek, Anton Manakhov, Marian Márik, David Nečas, Lenka Zajíčková, “High-Performance Ammonia Gas Sensors Based on Plasma Treated Carbon Nanostructures”, IEEE Sensors Journal, 17, pp. 1964-1970, 2017.

[8]. Deokar G., Vancsó P., Arenal R., Ravaux F., Casanova-Cháfer J., Llobet E., Makarova A., Vyalikh D., Struzzi C., Lambin P., Jouiad M., Colomer J.-F., “MoS2–Carbon Nanotube Hybrid Material Growth and Gas Sensing”, Advanced Materials Interfaces, 4 pp. 1700801, 2017.

[9]. Bittencourt C., Felten A., Espinos E. H., Ionescu R., Llobet E., Correig X., and Pireaux J.-J., “WO3 films modified with functionalised multi-wall carbon nanotubes: Morphological, compositional and gas response studies”, Sensors and Actuators B: Chemical, 115, pp. 33-41, 2006.

[10]. Dien N. D., Vuong D. D., and Chien N. D., “Hydrothermal synthesis and NH3 gas sensing property of WO3 nanorods at low temperature”, Advances in Natural Sciences: Nanoscience and Nanotechnology, 6, pp. 035006, 2015.

[11]. Xuan Vuong La, Thi Lan Anh Luu, Huu Lam Nguyen, Cong Tu Nguyen, Synergistic enhancement of ammonia gas-sensing properties at low temperature by compositing carbon nanotubes with tungsten oxide nanobricks, Vacuum, 168, pp. 108861, 2019.

[12]. J. Meyer, S. Hamwi, T. Bülow, H.-H. Johannes, T. Riedl, and W. Kowalsky, “Highly efficient simplified organic light emitting diodes”, Appl. Phys. Lett., 91, pp. 113506-113508, 2007.

[13]. P. Liu, Q. Sun, F. Zhu, K. Liu, K. Jiang, L. Liu, Q. Li, S. Fan, “Measuring the work function of carbon nanotubes with thermionic method”, Nano Lett. 8, pp. 647–651, 2008.


Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved