APPLICATION OF SUPPORT VECTOR MACHINE AND CONTEXTUAL OUTLIERS FOR INTRUSION DETECTION IN THE SCADA SYSTEM
About this article
Received: 27/08/19                Revised: 22/09/19                Published: 03/10/19Abstract
Keywords
Full Text:
PDF (Tiếng Việt)References
[1]. J. Slay and M. Miller, “Lessons learned from the Maroochy Water Breach”, Critical Infrastructure Protection, Vol. 253, pp. 73–82, 2008.
[2]. D. Ryu, H. Kim and K. Um, “Reducing security vulnerabilities for critical infrastructure”. Journal of Loss Prevention in the Process Industries, Vol. 22, pp. 1020–1024, 2009.
[3]. N. Falliere, L. O. Murchu and E. Chien, W32.Stuxnet Dossier, Symantec Report version 1.3, Nov 2010.
[4]. UCI. “Knowledge Discovery in Databases (KDD) Cup Datasets”. Available at http://kdd.ics.uci.edu.
[5]. T. Morris, W. Gao. “Industrial Control System Network Traffic Data Sets to Facilitate Intrusion Detection System Research”, in Critical Infrastructure Protection VIII, Springer Berlin Heidelberg, Vol. 441, pp. 65-78, 2014.
[6]. Thornton, Z., A Virtualized SCADA Laboratory for Research and Teaching, Department of Electrical and Computer Engineering, Mississippi State University, 2015.
[7]. Turnipseed, I., “A new SCADA dataset for intrusion detection system research”. Department of Electrical and Computer Engineering, Mississippi State University, August 2015.
[8]. S. Haykin, Neural Networks and Learning Machines (3rd Edition) - Prentice Hall, 2009.
[9]. Cortes, C., Vapnik, V., “Support-vector networks, Machine Learning”, Vol. 20, pp. 273–297, 1995.
[10]. Bauer, D. S., &Koblentz, M. E. NIDX – “An expert system for real-time network intrusion detection”, 1988.
[11]. Lee, W., Stolfo, S., &Mok, K. “A Data Mining Framework for Building Intrusion Detection Model”. Proc. IEEE Symp. Security and Privacy, pp. 120-132, 1999.
[12]. Amor, N. B., Benferhat, S., &Elouedi, Z. “Naïve Bayes vs. Decision Trees in Intrusion Detection Systems”. Proc. ACM Symp.Applied Computing, 420424, 2004.
[13]. Mukkamala, S., Janoski, G., &Sung, A. “Intrusion detection using neural networks and support vector machines”. Paper presented at the International Joint Conference, 2002.
[14]. Shah, H., Undercoffer, J., & Joshi, A. “Fuzzy Clustering for Intrusion Detection”. Proc. 12th IEEE International Conference Fuzzy Systems (FUZZ-IEEE ’03), 2, 1274-1278, 2003.
[15]. Ambwani, T. “Multi class support vector machine implementation to intrusion detection”. Paper presented at the Proceedings of the International Joint Conference of Neural Networks, 2003.
[16]. T.Shon, Y. Kim, C.Lee and J.Moon, “A Machine Learning Framework for Network Anomaly Detection using SVM and GA”, Proceedings of the 2005 IEEE, 2005.
[17]. SandyaPeddabachigari, Ajith Abraham, CrinaGrosan, Johanson Thomas. “Modeling Intrusion Detection Systems using Hybrid Intelligent Systems”. Journal of Network and Computer Applications, 2005.Refbacks
- There are currently no refbacks.





