ANALYZING THE TOTAL CONTENT OF ZINC, COPPER, LEAD AND CADMIUM IN ELEUSINE INDICA L PLANT USING ICP-MS METHOD | Xuân | TNU Journal of Science and Technology

ANALYZING THE TOTAL CONTENT OF ZINC, COPPER, LEAD AND CADMIUM IN ELEUSINE INDICA L PLANT USING ICP-MS METHOD

About this article

Received: 09/10/19                Revised: 07/11/19                Published: 20/11/19

Authors

Vuong Truong Xuan Email to author, University of Sciences - TNU

Abstract


Eleusine indica L has been commonly used as an herb plant to treat illness. Determining the content of some metallic elements such as Cu, Pb, Cd and Zn is important in assessing the safety level of heavy metals in Eleusine indica L when used as a herb. The concentrations of Cu, Pb, Cd and Zn in 15 samples of Eleusine indica L from different regions were analyzed by using ICP-MS method. The results of the standard addition analysis showed that the recovery efficiency of Cu, Pb, Cd and Zn determined by IPC-MS method ranged from 81.00% to 105.00%. The research results obtained the contents of Zn, Cu, Pb and Cd in the samples of dried Eleusine indica L plant were in the range of  41,80-392 mg/Kg, 3,00-10,8 mg/Kg, 0,09-1,00 mg/Kg and  0,01 – 0,15 mg/Kg, respectively. The concentrations of Cu, Pb, Cd and Zn in 15 samples of Eleusine indica L collected at the study site mostly meet the safety standards of those elements according to WHO standards.

Keywords


Eleusine indica L, ICP-MS method, lead content, cadmium content, zinc content, copper content

References


[1]. A. Filipiak-Szok, M. Kurzawa, and E. Szlyk, “Determination of toxic metals by ICP-MS in Asiatic and European medicinal plants and dietary supplements,” J. Trace Elem. Med. Biol., vol. 30, pp. 54–58, 2015.

[2]. E. W. I. Hajar, A. Z. Bin Sulaiman, and A. M. M. Sakinah, “Assessment of Heavy Metals Tolerance in Leaves, Stems and Flowers of Stevia Rebaudiana Plant,” Procedia Environ. Sci., vol. 20, pp. 386–393, 2014.

[3]. M. Shen, L. Chen, W. L. Han, and A. Ma, “Methods for the determination of heavy metals in indocalamus leaves after different preservation treatment using inductively-coupled plasma mass spectrometry,” Microchem. J., vol. 139, pp. 295–300, 2018.

[4]. N. Zhang et al., “Simultaneous determination of arsenic, cadmium and lead in plant foods by ICP-MS combined with automated focused infrared ashing and cold trap,” Food Chem., vol. 264, pp. 462–470, 2018.

[5]. T. L. Do, Nhung Cay Thuoc Va Vi Thuoc Viet Nam. Nhà xuất bản Y học, Hà Nội, 2004.

[6]. K. Agyarko, E. Darteh, and B. Berlinger, “Metal levels in some refuse dump soils and plants in Ghana,” Plant, Soil Environ., vol. 56, no. 5, pp. 244–251, 2010.

[7]. Z. Sun, J. Chen, X. Wang, and C. Lv, “Heavy metal accumulation in native plants at a metallurgy waste site in rural areas of Northern China,” Ecol. Eng., vol. 86, pp. 60–68, 2016.

[8]. WHO, “WHO Guidelines for assessing quality of herbal medicines with reference to contaminants and residues,” 2007.

[9]. L. M. de Oliveira et al., “Metal concentrations in traditional and herbal teas and their potential risks to human health,” Sci. Total Environ., vol. 633, pp. 649–657, Aug. 2018.


Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved