DATA MINING ON INFORMATION SYSTEM USING FUZZY ROUGH SET THEORY
About this article
Received: 14/11/19                Revised: 26/12/19                Published: 14/02/20Abstract
Keywords
Full Text:
PDFReferences
[1]. M. M. Deza and E. Deza, Encyclopedia of Distances. Springer, 2009.
[2]. D. Dubois and H. Prade, Putting rough sets and fuzzy sets together, Intelligent Decision Support. Kluwer Academic Publishers. Dordrecht, 1992.
[3]. D. Dubois and H. Prade, “Rough fuzzy sets and fuzzy rough sets,” International Journal of General Systems, 17, pp. 191-209, 1990.
[4]. L. A. Zadeh, “Fuzzy sets,” Information and Control, 8, p. 338353, 1965.
[5]. Z. Pawlak, “Rough sets,” International Journal of Computer and Information Sciences, 11(5), pp. 341-356, 1982.
[6]. Z. Pawlak, Rough sets: Theoretical Aspects of Reasoning About Data. Kluwcr Academic Publishers, 1991.
[7]. R. Jensen and Q. Shen, “Fuzzy-Rough Sets for Descriptive Dimensionality Reduction,” Proceedings of the 11th International Conference on Fuzzy Systems, 2002, pp. 29-34.
[8]. Y. Y. Yao, “On combining rough and fuzzy sets,” Proceedings of the CSC’95 Workshop on Rough Sets and Database Mining, Lin, T.Y. (Ed.), San Jose State University, 1995, 9 pages.
[9]. Yao Y. Y., “A Comparative Study of Fuzzy Sets and Rough Sets,” Information Sciences, vol.109, p. 2147, 1998.
[10]. Y. Y. Guan, and H. K. Wang, “Set-valued information systems,” Information Sciences, 176(17), pp. 2507-2525, 2006.
[11]. Y. Qian, C. Dang, J. Liang, and D. Tang, “Set-valued ordered information systems,” Information Sciences, 179(16), pp. 2809–2832, 2009.
[12]. C. R. Wang and F. F. Ou, “An Attribute Reduction Algorithm in Rough Set Theory Based on Information Entropy”, International Symposium on Computational Intelligence and Design, IEEE ISCID, 2008, pp. 3-6.
DOI: https://doi.org/10.34238/tnu-jst.2020.02.2330
Refbacks
- There are currently no refbacks.