A STUDY ON THE USE OF CARBON QUANTUM DOTS ON hCG IMMUNE ANALYSIS
About this article
Received: 30/01/20                Revised: 27/02/20                Published: 28/02/20Abstract
Keywords
Full Text:
PDFReferences
[1]. C. Nwabuobi, S. Arlier, F. Schatz, O. Guzeloglu-Kayisli, C. J. Lockwood, and U. A. Kayisli, “hCG: Biological functions and clinical applications,” Int. J. Mol. Sci., vol. 18, no. 10, pp. 1-15, 2017, doi: 10.3390/ijms18102037.
[2]. U. H. Stenman, A. Tiitinen, H. Alfthan, and L. Valmu, “The classification, functions and clinical use of different isoforms of HCG,” Hum. Reprod. Update, vol. 12, no. 6, pp. 769-784, 2006, doi: 10.1093/humupd/dml029.
[3]. D. Liu et al., “Multiplexed immunoassay biosensor for the detection of serum biomarkers - β-HCG and AFP of Down Syndrome based on photoluminescent water-soluble CdSe/ZnS quantum dots,” Sensors Actuators, B Chem., vol. 186, pp. 235-243, 2013, doi: 10.1016/j.snb. 2013.05.094.
[4]. R. Hoermann, G. Spoettl, R. Moncayo, and K. Mann, “Evidence for the presence of human chorionic gonadotropin (hCG) and free β-subunit of hCG in the human pituitary,” J. Clin. Endocrinol. Metab., vol. 71, no. 1, pp. 179-186, 1990, doi: 10.1210/jcem-71-1-179.
[5]. C. D. Walkey and W. C. W. Chan, Quantum Dots for Traceable Therapeutic Delivery. Elsevier Inc., 2014.
[6]. P. Bottoni and R. Scatena, “The Role of CA 125 as Tumor Marker: Biochemical and Clinical Aspects Introduction: Biochemical,” Adv. Exp. Med. Biol., vol. 867, pp. 229-244, 2015, doi: 10.1007/978-94-017-7215-0.
[7]. L. A. Cole, Problems with today’s hCG pregnancy tests. Elsevier Inc., 2015.
[8]. T. V. Thao, T. H. Yen, N. T. Quynh, V. Ta, H. Tran, and Q. Nguy, “A study to anchor hCG on polystyrene for immunoanalysis of beta-hCG,” TNU J. Sci. Technol., vol. 208, no. 15, pp. 117-123, 2019.
[9]. C. Zhou et al., “Synthesis of size-tunable photoluminescent aqueous CdSe/ZnS microspheres via a phase transfer method with amphiphilic oligomer and their application for detection of HCG antigen,” J. Mater. Chem., vol. 21, no. 20, pp. 7393-7400, 2011, doi: 10.1039/c1jm10090d.
[10]. N. Xia, X. Wang, and L. Liu, “A graphene oxide-based fluorescent method for the detection of human chorionic gonadotropin,” Sensors (Switzerland), vol. 16, no. 10, pp. 1-10, 2016, doi: 10.3390/s16101699.
[11]. S. Zhu et al., “Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging,” Angew. Chemie - Int. Ed., vol. 52, no. 14, pp. 3953-3957, 2013, doi: 10.1002/anie. 201300519.
[12]. Q. B. Hoang, V. T. Mai, D. K. Nguyen, D. Q. Truong, and X. D. Mai, “Crosslinking induced photoluminescence quenching in polyvinyl alcohol-carbon quantum dot composite,” Mater. Today Chem., vol. 12, pp. 166-172, Jun. 2019, doi: 10.1016/ j.mtchem.2019.01.003.
[13]. T. H. T. Dang, V. T. Mai, Q. T. Le, N. H. Duong, and X. D. Mai, “Post-decorated surface fluorophores enhance the photoluminescence of carbon quantum dots,” Chem. Phys., vol. 527, no. July, p. 110503, 2019, doi: 10.1016/j.chemphys. 2019.110503.
[14]. A. Shrivastava and V. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chronicles Young Sci., vol. 2, no. 1, p. 21, 2011, doi: 10.4103/2229-5186.79345.
DOI: https://doi.org/10.34238/tnu-jst.2020.02.2576
Refbacks
- There are currently no refbacks.