A METHOD OF APPROXIMATION FOR A ZERO OF MAXIMAL MONOTONE OPERATOR IN HILBERT SPACE
About this article
Received: 21/02/20                Revised: 28/02/20                Published: 29/02/20Abstract
Keywords
Full Text:
PDFReferences
[1]. R. T. Rockafellar, "Monotone operators and the proximal point algorithm," SIAM J. Control Optim., 14(5), pp. 877-898, 1976.
[2]. O. Guler, "On the convergence of the proximal point algorithm for convex minimization," SIAM J. Control Optim., 29(2), pp. 403-419, 1991.
[3]. S. Kakimura, and W. Takahashi, "Approximating solutions of maximal monotone operators in Hilbert spaces," J. Approx. Theory, 106(2), pp. 226-240, 2000.
[4]. N. Lehdili, and A. Moudafi, "Combining the proximal point algorithm and Tikhonov regularization," Optimization, 37(3), pp. 239-252, 1996.
[5]. H. K. Xu, "A regularization method for the proximal point algorithm," J. Glob. Optim., 36(1), pp. 115-125, 2006.
[6]. O. A. Boikanyo, and G. Morosanu, "A proximal point algorithm converging strongly for general errors," Optim. Lett., 4(4), pp. 635-641, 2010.
[7]. K. Goebel, and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
[8]. I. Yamada, "The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings," In Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, D.Butnariu, Y. Censor and S. Reich, Eds., North-Holland, Amsterdam, pp. 473-504, 2001.
[9]. S. Reich, "Extension problems for accretive sets in Banach spaces," J. Functional Anal., 26, pp. 378-395, 1977.
[10]. H. K. Xu, "Iterative algorithms for nonlinear operators," J. Lond. Math. Soc., 66(1), pp. 240-256, 2002.
[11]. P. E. Mai, "Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization," Set-Valued Var. Anal., 16(7-8), pp. 899-912, 2008.
[12]. N. Buong, V. X. Quynh, and N. T. T. Thuy, "A steepest-descent Krasnosel’skii–Mann algorithm for a class of variational inequalities in Banach spaces," J. Fixed Point Theory and Appl., 18(3), pp. 519-532, 2016.
[13]. N. Buong, N. S. Ha, and N. T. T. Thuy, "A new explicit iteration method for a class of variational inequalities," Numer. Algor., 72(2), pp. 467-481, 2016.
DOI: https://doi.org/10.34238/tnu-jst.2020.02.2693
Refbacks
- There are currently no refbacks.