ON A CLASS OF CYCLIC CODES | Hương | TNU Journal of Science and Technology

ON A CLASS OF CYCLIC CODES

About this article

Received: 25/09/20                Revised: 03/11/20                Published: 30/11/20

Authors

1. Nguyen Thi Lan Huong Email to author, TNU –University of Economics and Business Administration
2. Hoang Phuong Khanh, TNU - University of Information and Communication Technology
3. Nguyen Thi Nhung, TNU - University of Information and Communication Technology

Abstract


For any odd prime  such that  the structures and duals of cyclic codes of length  over are completely determined in term of their generator polynomials. Dual codes of all cyclic of length  over  are also investigated. Furthermore, we give the number of codewords in each of those cyclic codes. We also obtain the number of cyclic codes of length  over


Keywords


Mã cyclic; mã đối ngẫu; mã nghiệm lặp; vành chuỗi; vành địa phương

References


[1]. S. D. Berman, “Semisimple cyclic and Abelian codes. II,” Kibernetika (Kiev), vol. 3, pp. 21-30, 1967.

[2]. J. L. Massey, D. J. Costello, and J. Justesen, “Polynomial weights and code constructions,” IEEE Trans. Inform. Theory, vol. 19, pp. 101-110, 1973.

[3]. G. Falkner, B. Kowol, W. Heise, and E. Zehendner, “On the existence of cyclic optimal codes,” Atti Sem. Mat. Fis. Univ. Modena, vol. 28, pp. 326-341, 1979.

[4]. R. M. Roth, and G. Seroussi, “On cyclic MDS codes of length q over GF(q),” IEEE Trans. Inform. Theory, vol. 32, pp. 284-285, 1986.

[5]. G. Castagnoli, J. L. Massey, P. A. Schoeller, and N. von Seemann, “On repeated-root cyclic codes,” IEEE Trans. Inform. Theory, vol. 37, pp. 337-342, 1991.

[6]. J. H. van Lint, “Repeated-root cyclic codes,” IEEE Trans. Inform. Theory, vol. 37, pp. 343-345, 1991.

[7]. C. S. Nedeloaia, “Weight distributions of cyclic self-dual codes,” IEEE Trans. Inform. Theory, vol. 49, pp. 1582-1591, 2003.

[8]. L.-Z. Tang, C. B. Soh, and E. Gunawan, “A note on the q-ary image of a q É m-ary repeated-root cyclic code},” IEEE Trans. Inform. Theory, vol. 43, pp. 732-737, 1997.

[9]. B. Chen, H. Q. Dinh, H. Liu, and L.Wang, “Constacyclic codes of lengthover ,” Finite Fields & Appl., vol. 36, pp. 108-130, 2016.

[10]. H. Q. Dinh, “Constacyclic codes of length over R,” J. Algebra, vol. 324, pp. 940-950, 2010.


Refbacks

  • There are currently no refbacks.
TNU Journal of Science and Technology
Rooms 408, 409 - Administration Building - Thai Nguyen University
Tan Thinh Ward - Thai Nguyen City
Phone: (+84) 208 3840 288 - E-mail: jst@tnu.edu.vn
Based on Open Journal Systems
©2018 All Rights Reserved